Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation
Identifying economically viable intervention measures to reduce COVID-19 transmission on aircraft is of critical importance especially as new SARS-CoV2 variants emerge. Computational fluid-particle dynamic simulations are employed to investigate aerosol transmission and intervention measures on a Bo...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-03, Vol.33 (3), p.033312-033312 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 033312 |
---|---|
container_issue | 3 |
container_start_page | 033312 |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Talaat, Khaled Abuhegazy, Mohamed Mahfoze, Omar A. Anderoglu, Osman Poroseva, Svetlana V. |
description | Identifying economically viable intervention measures to reduce COVID-19 transmission on aircraft is of critical importance especially as new SARS-CoV2 variants emerge. Computational fluid-particle dynamic simulations are employed to investigate aerosol transmission and intervention measures on a Boeing 737 cabin zone. The present study compares aerosol transmission in three models: (a) a model at full passenger capacity (60 passengers), (b) a model at reduced capacity (40 passengers), and (c) a model at full capacity with sneeze guards/shields between passengers. Lagrangian simulations are used to model aerosol transport using particle sizes in the 1–50 μm range, which spans aerosols emitted during breathing, speech, and coughing. Sneeze shields placed between passengers redirect the local air flow and transfer part of the lateral momentum of the air to longitudinal momentum. This mechanism is exploited to direct more particles to the back of the seats in front of the index patient (aerosol source) and reduce lateral transfer of aerosol particles to other passengers. It is demonstrated that using sneeze shields on full capacity flights can reduce aerosol transmission to levels below that of reduced capacity flights without sneeze shields. |
doi_str_mv | 10.1063/5.0044720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518734137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518734137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a103e18bab4f25fee83bfbfb02d396c64fb8e5ccd595ee251015933509a5c4643</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMozji68A9IwI0KNSaVymsjaPsaGJiFj21IpW96MlQlPUlVi__e9MP2BZJFws3HOefei9BjSs4pEewlPyek62RL7qBTSpRupBDi7vYtSSMEoyfoQSk3hBCmW3EfnTCmtGyZOkXxUxjnwU4hRZw8tpBTSQOeso1lDKXs6hFb_CZBiCssmcQ25PVgI-BvYbrGIU6QNxB3EiPYMmco2KeMF1dfL942VOMxTGG183iI7nk7FHh0uM_Ql_fvPi8-NpdXHy4Wry8b10k2NZYSBlT1tu98yz2AYr2vh7RLpoUTne8VcOeWXHOAllNCuWaME22560THztCrve567kdYuhov28Gscxht_m6SDebPnxiuzSptjCKCaKGqwLODQE63M5TJ1Gk4GLZ9p7mY6qkk6yiTFX36F3qT5hxre5WqwSThilbq-Z5ydcIlgz-GocRst2i4OWyxsk9-T38kf66tAi_2QHFh2g32yGxS_qVk1kv_P_hf6x-wxLQX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501570581</pqid></control><display><type>article</type><title>Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Talaat, Khaled ; Abuhegazy, Mohamed ; Mahfoze, Omar A. ; Anderoglu, Osman ; Poroseva, Svetlana V.</creator><creatorcontrib>Talaat, Khaled ; Abuhegazy, Mohamed ; Mahfoze, Omar A. ; Anderoglu, Osman ; Poroseva, Svetlana V.</creatorcontrib><description>Identifying economically viable intervention measures to reduce COVID-19 transmission on aircraft is of critical importance especially as new SARS-CoV2 variants emerge. Computational fluid-particle dynamic simulations are employed to investigate aerosol transmission and intervention measures on a Boeing 737 cabin zone. The present study compares aerosol transmission in three models: (a) a model at full passenger capacity (60 passengers), (b) a model at reduced capacity (40 passengers), and (c) a model at full capacity with sneeze guards/shields between passengers. Lagrangian simulations are used to model aerosol transport using particle sizes in the 1–50 μm range, which spans aerosols emitted during breathing, speech, and coughing. Sneeze shields placed between passengers redirect the local air flow and transfer part of the lateral momentum of the air to longitudinal momentum. This mechanism is exploited to direct more particles to the back of the seats in front of the index patient (aerosol source) and reduce lateral transfer of aerosol particles to other passengers. It is demonstrated that using sneeze shields on full capacity flights can reduce aerosol transmission to levels below that of reduced capacity flights without sneeze shields.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0044720</identifier><identifier>PMID: 33897238</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Aerosols ; Air flow ; Aircraft compartments ; Boeing 737 aircraft ; Coronaviruses ; COVID-19 ; Disease transmission ; Fluid dynamics ; Guards ; Momentum ; Passengers ; Physics ; Seats ; Shields ; Simulation</subject><ispartof>Physics of fluids (1994), 2021-03, Vol.33 (3), p.033312-033312</ispartof><rights>Author(s)</rights><rights>2021 Author(s).</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><rights>2021 Author(s) 2021 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a103e18bab4f25fee83bfbfb02d396c64fb8e5ccd595ee251015933509a5c4643</citedby><cites>FETCH-LOGICAL-c473t-a103e18bab4f25fee83bfbfb02d396c64fb8e5ccd595ee251015933509a5c4643</cites><orcidid>0000-0002-1797-6603 ; 0000-0002-8102-4359 ; 0000-0003-3607-1348 ; 0000-0002-4795-7278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33897238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Talaat, Khaled</creatorcontrib><creatorcontrib>Abuhegazy, Mohamed</creatorcontrib><creatorcontrib>Mahfoze, Omar A.</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><creatorcontrib>Poroseva, Svetlana V.</creatorcontrib><title>Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation</title><title>Physics of fluids (1994)</title><addtitle>Phys Fluids (1994)</addtitle><description>Identifying economically viable intervention measures to reduce COVID-19 transmission on aircraft is of critical importance especially as new SARS-CoV2 variants emerge. Computational fluid-particle dynamic simulations are employed to investigate aerosol transmission and intervention measures on a Boeing 737 cabin zone. The present study compares aerosol transmission in three models: (a) a model at full passenger capacity (60 passengers), (b) a model at reduced capacity (40 passengers), and (c) a model at full capacity with sneeze guards/shields between passengers. Lagrangian simulations are used to model aerosol transport using particle sizes in the 1–50 μm range, which spans aerosols emitted during breathing, speech, and coughing. Sneeze shields placed between passengers redirect the local air flow and transfer part of the lateral momentum of the air to longitudinal momentum. This mechanism is exploited to direct more particles to the back of the seats in front of the index patient (aerosol source) and reduce lateral transfer of aerosol particles to other passengers. It is demonstrated that using sneeze shields on full capacity flights can reduce aerosol transmission to levels below that of reduced capacity flights without sneeze shields.</description><subject>Aerosols</subject><subject>Air flow</subject><subject>Aircraft compartments</subject><subject>Boeing 737 aircraft</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Fluid dynamics</subject><subject>Guards</subject><subject>Momentum</subject><subject>Passengers</subject><subject>Physics</subject><subject>Seats</subject><subject>Shields</subject><subject>Simulation</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYMozji68A9IwI0KNSaVymsjaPsaGJiFj21IpW96MlQlPUlVi__e9MP2BZJFws3HOefei9BjSs4pEewlPyek62RL7qBTSpRupBDi7vYtSSMEoyfoQSk3hBCmW3EfnTCmtGyZOkXxUxjnwU4hRZw8tpBTSQOeso1lDKXs6hFb_CZBiCssmcQ25PVgI-BvYbrGIU6QNxB3EiPYMmco2KeMF1dfL942VOMxTGG183iI7nk7FHh0uM_Ql_fvPi8-NpdXHy4Wry8b10k2NZYSBlT1tu98yz2AYr2vh7RLpoUTne8VcOeWXHOAllNCuWaME22560THztCrve567kdYuhov28Gscxht_m6SDebPnxiuzSptjCKCaKGqwLODQE63M5TJ1Gk4GLZ9p7mY6qkk6yiTFX36F3qT5hxre5WqwSThilbq-Z5ydcIlgz-GocRst2i4OWyxsk9-T38kf66tAi_2QHFh2g32yGxS_qVk1kv_P_hf6x-wxLQX</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Talaat, Khaled</creator><creator>Abuhegazy, Mohamed</creator><creator>Mahfoze, Omar A.</creator><creator>Anderoglu, Osman</creator><creator>Poroseva, Svetlana V.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1797-6603</orcidid><orcidid>https://orcid.org/0000-0002-8102-4359</orcidid><orcidid>https://orcid.org/0000-0003-3607-1348</orcidid><orcidid>https://orcid.org/0000-0002-4795-7278</orcidid></search><sort><creationdate>20210301</creationdate><title>Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation</title><author>Talaat, Khaled ; Abuhegazy, Mohamed ; Mahfoze, Omar A. ; Anderoglu, Osman ; Poroseva, Svetlana V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a103e18bab4f25fee83bfbfb02d396c64fb8e5ccd595ee251015933509a5c4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Air flow</topic><topic>Aircraft compartments</topic><topic>Boeing 737 aircraft</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Fluid dynamics</topic><topic>Guards</topic><topic>Momentum</topic><topic>Passengers</topic><topic>Physics</topic><topic>Seats</topic><topic>Shields</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talaat, Khaled</creatorcontrib><creatorcontrib>Abuhegazy, Mohamed</creatorcontrib><creatorcontrib>Mahfoze, Omar A.</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><creatorcontrib>Poroseva, Svetlana V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talaat, Khaled</au><au>Abuhegazy, Mohamed</au><au>Mahfoze, Omar A.</au><au>Anderoglu, Osman</au><au>Poroseva, Svetlana V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation</atitle><jtitle>Physics of fluids (1994)</jtitle><addtitle>Phys Fluids (1994)</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><spage>033312</spage><epage>033312</epage><pages>033312-033312</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Identifying economically viable intervention measures to reduce COVID-19 transmission on aircraft is of critical importance especially as new SARS-CoV2 variants emerge. Computational fluid-particle dynamic simulations are employed to investigate aerosol transmission and intervention measures on a Boeing 737 cabin zone. The present study compares aerosol transmission in three models: (a) a model at full passenger capacity (60 passengers), (b) a model at reduced capacity (40 passengers), and (c) a model at full capacity with sneeze guards/shields between passengers. Lagrangian simulations are used to model aerosol transport using particle sizes in the 1–50 μm range, which spans aerosols emitted during breathing, speech, and coughing. Sneeze shields placed between passengers redirect the local air flow and transfer part of the lateral momentum of the air to longitudinal momentum. This mechanism is exploited to direct more particles to the back of the seats in front of the index patient (aerosol source) and reduce lateral transfer of aerosol particles to other passengers. It is demonstrated that using sneeze shields on full capacity flights can reduce aerosol transmission to levels below that of reduced capacity flights without sneeze shields.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33897238</pmid><doi>10.1063/5.0044720</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1797-6603</orcidid><orcidid>https://orcid.org/0000-0002-8102-4359</orcidid><orcidid>https://orcid.org/0000-0003-3607-1348</orcidid><orcidid>https://orcid.org/0000-0002-4795-7278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-03, Vol.33 (3), p.033312-033312 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_miscellaneous_2518734137 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aerosols Air flow Aircraft compartments Boeing 737 aircraft Coronaviruses COVID-19 Disease transmission Fluid dynamics Guards Momentum Passengers Physics Seats Shields Simulation |
title | Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20aerosol%20transmission%20on%20a%20Boeing%20737%20airplane%20with%20intervention%20measures%20for%20COVID-19%20mitigation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Talaat,%20Khaled&rft.date=2021-03-01&rft.volume=33&rft.issue=3&rft.spage=033312&rft.epage=033312&rft.pages=033312-033312&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0044720&rft_dat=%3Cproquest_pubme%3E2518734137%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501570581&rft_id=info:pmid/33897238&rfr_iscdi=true |