Drying Behavior of Colloidal Silica Gels

Observations of the drying behavior of thick‐wall colloidal silica gel structures are reported. Various techniques are examined to prevent cracking during the drying of these highstrain viscoelastic materials. Experiments are described which illustrate the effect of relative humidity on the drying r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1989-10, Vol.72 (10), p.1816-1821
Hauptverfasser: Simpkins, Peter G., Johnson Jr, David W., Fleming, Debra A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1821
container_issue 10
container_start_page 1816
container_title Journal of the American Ceramic Society
container_volume 72
creator Simpkins, Peter G.
Johnson Jr, David W.
Fleming, Debra A.
description Observations of the drying behavior of thick‐wall colloidal silica gel structures are reported. Various techniques are examined to prevent cracking during the drying of these highstrain viscoelastic materials. Experiments are described which illustrate the effect of relative humidity on the drying rate and on the shrinkage of various samples under isothermal conditions. Surface temperature measurements indicate that evaporation occurs at approximately the wet‐bulb temperature of the surrounding atmosphere. Acoustic detection of the internal strain activity during drying leads to the conclusion that control of the sol‐gel surface tension in the material preparation is crucial to reducing the interior stresses.
doi_str_mv 10.1111/j.1151-2916.1989.tb05984.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25187076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25187076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5116-ec400501bf54dda92c82b19c7bbdba1e1eda46a9d59d0dd8dee6c3cf0203dbba3</originalsourceid><addsrcrecordid>eNqVkMFOGzEQhi1EpQbad1gBQr1s6vGuvTYn6AZCEaWHFnEceW1v62CyYCcleXt2lYgDp-LLyPLnf2Y-Qg6AjqE_X2d94ZAzBWIMSqrxoqFcyXK82iEj4NunXTKilLK8kox-JHspzfprj5cj8mUS137-J_vm_up_votZ12Z1F0LnrQ7ZLx-80dnUhfSJfGh1SO7ztu6T24vz3_Vlfv1z-r0-u84NBxC5MyWlnELT8tJarZiRrAFlqqaxjQYHzupSaGW5stRaaZ0TpjAtZbSwTaOLfXK8yX2M3dPSpQU--GRcCHruumVCxkFWtBL_BZaSsx48fAPOumWc90sgMCWLSiioeupkQ5nYpRRdi4_RP-i4RqA4uMYZDq5xEIqDa9y6xlX_-WjbQiejQxv13Pj0miAEL0sYJjndYM8-uPU7GuDVWX0OEoat802ETwu3eo3Q8R5FVVQc726myH_c1fSGTXBSvADjpqFL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298376917</pqid></control><display><type>article</type><title>Drying Behavior of Colloidal Silica Gels</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>Simpkins, Peter G. ; Johnson Jr, David W. ; Fleming, Debra A.</creator><creatorcontrib>Simpkins, Peter G. ; Johnson Jr, David W. ; Fleming, Debra A.</creatorcontrib><description>Observations of the drying behavior of thick‐wall colloidal silica gel structures are reported. Various techniques are examined to prevent cracking during the drying of these highstrain viscoelastic materials. Experiments are described which illustrate the effect of relative humidity on the drying rate and on the shrinkage of various samples under isothermal conditions. Surface temperature measurements indicate that evaporation occurs at approximately the wet‐bulb temperature of the surrounding atmosphere. Acoustic detection of the internal strain activity during drying leads to the conclusion that control of the sol‐gel surface tension in the material preparation is crucial to reducing the interior stresses.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1989.tb05984.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Chemical industry and chemicals ; colloids ; drying ; Exact sciences and technology ; fracture ; sol-gel ; surfactants ; Technical ceramics</subject><ispartof>Journal of the American Ceramic Society, 1989-10, Vol.72 (10), p.1816-1821</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5116-ec400501bf54dda92c82b19c7bbdba1e1eda46a9d59d0dd8dee6c3cf0203dbba3</citedby><cites>FETCH-LOGICAL-c5116-ec400501bf54dda92c82b19c7bbdba1e1eda46a9d59d0dd8dee6c3cf0203dbba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1989.tb05984.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1989.tb05984.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23910,23911,25119,27848,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6654412$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Simpkins, Peter G.</creatorcontrib><creatorcontrib>Johnson Jr, David W.</creatorcontrib><creatorcontrib>Fleming, Debra A.</creatorcontrib><title>Drying Behavior of Colloidal Silica Gels</title><title>Journal of the American Ceramic Society</title><description>Observations of the drying behavior of thick‐wall colloidal silica gel structures are reported. Various techniques are examined to prevent cracking during the drying of these highstrain viscoelastic materials. Experiments are described which illustrate the effect of relative humidity on the drying rate and on the shrinkage of various samples under isothermal conditions. Surface temperature measurements indicate that evaporation occurs at approximately the wet‐bulb temperature of the surrounding atmosphere. Acoustic detection of the internal strain activity during drying leads to the conclusion that control of the sol‐gel surface tension in the material preparation is crucial to reducing the interior stresses.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>colloids</subject><subject>drying</subject><subject>Exact sciences and technology</subject><subject>fracture</subject><subject>sol-gel</subject><subject>surfactants</subject><subject>Technical ceramics</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkMFOGzEQhi1EpQbad1gBQr1s6vGuvTYn6AZCEaWHFnEceW1v62CyYCcleXt2lYgDp-LLyPLnf2Y-Qg6AjqE_X2d94ZAzBWIMSqrxoqFcyXK82iEj4NunXTKilLK8kox-JHspzfprj5cj8mUS137-J_vm_up_votZ12Z1F0LnrQ7ZLx-80dnUhfSJfGh1SO7ztu6T24vz3_Vlfv1z-r0-u84NBxC5MyWlnELT8tJarZiRrAFlqqaxjQYHzupSaGW5stRaaZ0TpjAtZbSwTaOLfXK8yX2M3dPSpQU--GRcCHruumVCxkFWtBL_BZaSsx48fAPOumWc90sgMCWLSiioeupkQ5nYpRRdi4_RP-i4RqA4uMYZDq5xEIqDa9y6xlX_-WjbQiejQxv13Pj0miAEL0sYJjndYM8-uPU7GuDVWX0OEoat802ETwu3eo3Q8R5FVVQc726myH_c1fSGTXBSvADjpqFL</recordid><startdate>198910</startdate><enddate>198910</enddate><creator>Simpkins, Peter G.</creator><creator>Johnson Jr, David W.</creator><creator>Fleming, Debra A.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SR</scope></search><sort><creationdate>198910</creationdate><title>Drying Behavior of Colloidal Silica Gels</title><author>Simpkins, Peter G. ; Johnson Jr, David W. ; Fleming, Debra A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5116-ec400501bf54dda92c82b19c7bbdba1e1eda46a9d59d0dd8dee6c3cf0203dbba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>colloids</topic><topic>drying</topic><topic>Exact sciences and technology</topic><topic>fracture</topic><topic>sol-gel</topic><topic>surfactants</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpkins, Peter G.</creatorcontrib><creatorcontrib>Johnson Jr, David W.</creatorcontrib><creatorcontrib>Fleming, Debra A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Engineered Materials Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpkins, Peter G.</au><au>Johnson Jr, David W.</au><au>Fleming, Debra A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drying Behavior of Colloidal Silica Gels</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1989-10</date><risdate>1989</risdate><volume>72</volume><issue>10</issue><spage>1816</spage><epage>1821</epage><pages>1816-1821</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Observations of the drying behavior of thick‐wall colloidal silica gel structures are reported. Various techniques are examined to prevent cracking during the drying of these highstrain viscoelastic materials. Experiments are described which illustrate the effect of relative humidity on the drying rate and on the shrinkage of various samples under isothermal conditions. Surface temperature measurements indicate that evaporation occurs at approximately the wet‐bulb temperature of the surrounding atmosphere. Acoustic detection of the internal strain activity during drying leads to the conclusion that control of the sol‐gel surface tension in the material preparation is crucial to reducing the interior stresses.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1989.tb05984.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1989-10, Vol.72 (10), p.1816-1821
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_25187076
source Wiley Online Library Journals Frontfile Complete; Periodicals Index Online
subjects Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Chemical industry and chemicals
colloids
drying
Exact sciences and technology
fracture
sol-gel
surfactants
Technical ceramics
title Drying Behavior of Colloidal Silica Gels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drying%20Behavior%20of%20Colloidal%20Silica%20Gels&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Simpkins,%20Peter%20G.&rft.date=1989-10&rft.volume=72&rft.issue=10&rft.spage=1816&rft.epage=1821&rft.pages=1816-1821&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1989.tb05984.x&rft_dat=%3Cproquest_cross%3E25187076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298376917&rft_id=info:pmid/&rfr_iscdi=true