FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted

Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. FOSL1 was inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hepatology 2021-08, Vol.75 (2), p.363-376
Hauptverfasser: Vallejo, Adrián, Erice, Oihane, Entrialgo-Cadierno, Rodrigo, Feliu, Iker, Guruceaga, Elizabeth, Perugorria, Maria J., Olaizola, Paula, Muggli, Alexandra, Macaya, Irati, O’Dell, Michael, Ruiz-Fernandez de Cordoba, Borja, Ortiz-Espinosa, Sergio, Hezel, Aram F., Arozarena, Imanol, Lecanda, Fernando, Avila, Matias A., Fernandez-Barrena, Maite G., Evert, Matthias, Ponz-Sarvise, Mariano, Calvisi, Diego F., Banales, Jesus M., Vicent, Silve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue 2
container_start_page 363
container_title Journal of hepatology
container_volume 75
creator Vallejo, Adrián
Erice, Oihane
Entrialgo-Cadierno, Rodrigo
Feliu, Iker
Guruceaga, Elizabeth
Perugorria, Maria J.
Olaizola, Paula
Muggli, Alexandra
Macaya, Irati
O’Dell, Michael
Ruiz-Fernandez de Cordoba, Borja
Ortiz-Espinosa, Sergio
Hezel, Aram F.
Arozarena, Imanol
Lecanda, Fernando
Avila, Matias A.
Fernandez-Barrena, Maite G.
Evert, Matthias
Ponz-Sarvise, Mariano
Calvisi, Diego F.
Banales, Jesus M.
Vicent, Silve
description Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention. [Display omitted] •The transcription factor FOSL1 is upregulated in human and mouse CCA, and is independently associated with patient surviv
doi_str_mv 10.1016/j.jhep.2021.03.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518546378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016882782100235X</els_id><sourcerecordid>2568307058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a0d8c19d3b2cc26981333e500c005bab60d69a7dec7a2ea7b55af19a62faaa3e3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaLZp_0APxdBLL3ZH0tqWoZcSkqawkEPSsxjL46yMbbmSHMi_j8ymPfSQ0zDwvQfvPcY-cSg48OrbUAxHWgoBghcgCxDqDdvxCiCHas_fsl2CVK5Erc7Z-xAGAJDQ7N-xcymVqmVZ71h_fXt34Nni3eQihcwc3Yjzg3UGvbGzmzB7tJhFj3Mw3i7RuhnHjPqeTHQ-ZPGIMTNuHbuspfSRx4XWaA2O41MW0T9QpO4DO-txDPTx5V6w39dX95c3-eH256_LH4fc7IWKOUKnDG862QpjRNUoLqWkEsAAlC22FXRVg3VHpkZBWLdliT1vsBI9IkqSF-zryTcF-rNSiHqywdCYMpFbgxYlV-W-krVK6Jf_0MGtPoXbqEpJqKHcKHGijHcheOr14u2E_klz0NsKetDbCnpbQYPUaYUk-vxivbYTdf8kf2tPwPcTQKmLR0teB2NpNtRZn3rVnbOv-T8DBo6aWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568307058</pqid></control><display><type>article</type><title>FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Vallejo, Adrián ; Erice, Oihane ; Entrialgo-Cadierno, Rodrigo ; Feliu, Iker ; Guruceaga, Elizabeth ; Perugorria, Maria J. ; Olaizola, Paula ; Muggli, Alexandra ; Macaya, Irati ; O’Dell, Michael ; Ruiz-Fernandez de Cordoba, Borja ; Ortiz-Espinosa, Sergio ; Hezel, Aram F. ; Arozarena, Imanol ; Lecanda, Fernando ; Avila, Matias A. ; Fernandez-Barrena, Maite G. ; Evert, Matthias ; Ponz-Sarvise, Mariano ; Calvisi, Diego F. ; Banales, Jesus M. ; Vicent, Silve</creator><creatorcontrib>Vallejo, Adrián ; Erice, Oihane ; Entrialgo-Cadierno, Rodrigo ; Feliu, Iker ; Guruceaga, Elizabeth ; Perugorria, Maria J. ; Olaizola, Paula ; Muggli, Alexandra ; Macaya, Irati ; O’Dell, Michael ; Ruiz-Fernandez de Cordoba, Borja ; Ortiz-Espinosa, Sergio ; Hezel, Aram F. ; Arozarena, Imanol ; Lecanda, Fernando ; Avila, Matias A. ; Fernandez-Barrena, Maite G. ; Evert, Matthias ; Ponz-Sarvise, Mariano ; Calvisi, Diego F. ; Banales, Jesus M. ; Vicent, Silve</creatorcontrib><description>Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention. [Display omitted] •The transcription factor FOSL1 is upregulated in human and mouse CCA, and is independently associated with patient survival.•Genetic FOSL1 inhibition impairs cell proliferation and cell cycle progression in vitro, and tumor initiation and maintenance in vivo.•The mevalonate pathway gene HMGCS1 is upregulated in human and mouse CCA, and its expression is controlled by direct FOSL1 promoter binding.•Genetic HMGCS1 abrogation or pharmacological blockade with mTOR inhibitors phenocopies loss of FOSL1.</description><identifier>ISSN: 0168-8278</identifier><identifier>EISSN: 1600-0641</identifier><identifier>DOI: 10.1016/j.jhep.2021.03.028</identifier><identifier>PMID: 33887357</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aged ; Bile ducts ; Biliary tract ; Cell cycle ; Cell proliferation ; Cholangiocarcinoma ; Cholangiocarcinoma - diagnosis ; Cholangiocarcinoma - etiology ; Cholangiocarcinoma - genetics ; Chromatin ; Epigenetics ; Female ; FOSL1 ; Genetic engineering ; genetics ; Humans ; Hydroxymethylglutaryl-CoA Synthase - drug effects ; Hydroxymethylglutaryl-CoA Synthase - genetics ; Immunoprecipitation ; Male ; Middle Aged ; Molecular modelling ; Proto-Oncogene Proteins c-fos - adverse effects ; Proto-Oncogene Proteins c-fos - genetics ; Signal transduction ; targeted therapies ; Transcription factors ; Transcriptional Activation - drug effects ; Transcriptional Activation - genetics ; Tumors ; Xenografts</subject><ispartof>Journal of hepatology, 2021-08, Vol.75 (2), p.363-376</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Aug 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a0d8c19d3b2cc26981333e500c005bab60d69a7dec7a2ea7b55af19a62faaa3e3</citedby><cites>FETCH-LOGICAL-c428t-a0d8c19d3b2cc26981333e500c005bab60d69a7dec7a2ea7b55af19a62faaa3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016882782100235X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33887357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallejo, Adrián</creatorcontrib><creatorcontrib>Erice, Oihane</creatorcontrib><creatorcontrib>Entrialgo-Cadierno, Rodrigo</creatorcontrib><creatorcontrib>Feliu, Iker</creatorcontrib><creatorcontrib>Guruceaga, Elizabeth</creatorcontrib><creatorcontrib>Perugorria, Maria J.</creatorcontrib><creatorcontrib>Olaizola, Paula</creatorcontrib><creatorcontrib>Muggli, Alexandra</creatorcontrib><creatorcontrib>Macaya, Irati</creatorcontrib><creatorcontrib>O’Dell, Michael</creatorcontrib><creatorcontrib>Ruiz-Fernandez de Cordoba, Borja</creatorcontrib><creatorcontrib>Ortiz-Espinosa, Sergio</creatorcontrib><creatorcontrib>Hezel, Aram F.</creatorcontrib><creatorcontrib>Arozarena, Imanol</creatorcontrib><creatorcontrib>Lecanda, Fernando</creatorcontrib><creatorcontrib>Avila, Matias A.</creatorcontrib><creatorcontrib>Fernandez-Barrena, Maite G.</creatorcontrib><creatorcontrib>Evert, Matthias</creatorcontrib><creatorcontrib>Ponz-Sarvise, Mariano</creatorcontrib><creatorcontrib>Calvisi, Diego F.</creatorcontrib><creatorcontrib>Banales, Jesus M.</creatorcontrib><creatorcontrib>Vicent, Silve</creatorcontrib><title>FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted</title><title>Journal of hepatology</title><addtitle>J Hepatol</addtitle><description>Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention. [Display omitted] •The transcription factor FOSL1 is upregulated in human and mouse CCA, and is independently associated with patient survival.•Genetic FOSL1 inhibition impairs cell proliferation and cell cycle progression in vitro, and tumor initiation and maintenance in vivo.•The mevalonate pathway gene HMGCS1 is upregulated in human and mouse CCA, and its expression is controlled by direct FOSL1 promoter binding.•Genetic HMGCS1 abrogation or pharmacological blockade with mTOR inhibitors phenocopies loss of FOSL1.</description><subject>Aged</subject><subject>Bile ducts</subject><subject>Biliary tract</subject><subject>Cell cycle</subject><subject>Cell proliferation</subject><subject>Cholangiocarcinoma</subject><subject>Cholangiocarcinoma - diagnosis</subject><subject>Cholangiocarcinoma - etiology</subject><subject>Cholangiocarcinoma - genetics</subject><subject>Chromatin</subject><subject>Epigenetics</subject><subject>Female</subject><subject>FOSL1</subject><subject>Genetic engineering</subject><subject>genetics</subject><subject>Humans</subject><subject>Hydroxymethylglutaryl-CoA Synthase - drug effects</subject><subject>Hydroxymethylglutaryl-CoA Synthase - genetics</subject><subject>Immunoprecipitation</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Molecular modelling</subject><subject>Proto-Oncogene Proteins c-fos - adverse effects</subject><subject>Proto-Oncogene Proteins c-fos - genetics</subject><subject>Signal transduction</subject><subject>targeted therapies</subject><subject>Transcription factors</subject><subject>Transcriptional Activation - drug effects</subject><subject>Transcriptional Activation - genetics</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>0168-8278</issn><issn>1600-0641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVpaLZp_0APxdBLL3ZH0tqWoZcSkqawkEPSsxjL46yMbbmSHMi_j8ymPfSQ0zDwvQfvPcY-cSg48OrbUAxHWgoBghcgCxDqDdvxCiCHas_fsl2CVK5Erc7Z-xAGAJDQ7N-xcymVqmVZ71h_fXt34Nni3eQihcwc3Yjzg3UGvbGzmzB7tJhFj3Mw3i7RuhnHjPqeTHQ-ZPGIMTNuHbuspfSRx4XWaA2O41MW0T9QpO4DO-txDPTx5V6w39dX95c3-eH256_LH4fc7IWKOUKnDG862QpjRNUoLqWkEsAAlC22FXRVg3VHpkZBWLdliT1vsBI9IkqSF-zryTcF-rNSiHqywdCYMpFbgxYlV-W-krVK6Jf_0MGtPoXbqEpJqKHcKHGijHcheOr14u2E_klz0NsKetDbCnpbQYPUaYUk-vxivbYTdf8kf2tPwPcTQKmLR0teB2NpNtRZn3rVnbOv-T8DBo6aWw</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Vallejo, Adrián</creator><creator>Erice, Oihane</creator><creator>Entrialgo-Cadierno, Rodrigo</creator><creator>Feliu, Iker</creator><creator>Guruceaga, Elizabeth</creator><creator>Perugorria, Maria J.</creator><creator>Olaizola, Paula</creator><creator>Muggli, Alexandra</creator><creator>Macaya, Irati</creator><creator>O’Dell, Michael</creator><creator>Ruiz-Fernandez de Cordoba, Borja</creator><creator>Ortiz-Espinosa, Sergio</creator><creator>Hezel, Aram F.</creator><creator>Arozarena, Imanol</creator><creator>Lecanda, Fernando</creator><creator>Avila, Matias A.</creator><creator>Fernandez-Barrena, Maite G.</creator><creator>Evert, Matthias</creator><creator>Ponz-Sarvise, Mariano</creator><creator>Calvisi, Diego F.</creator><creator>Banales, Jesus M.</creator><creator>Vicent, Silve</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>202108</creationdate><title>FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted</title><author>Vallejo, Adrián ; Erice, Oihane ; Entrialgo-Cadierno, Rodrigo ; Feliu, Iker ; Guruceaga, Elizabeth ; Perugorria, Maria J. ; Olaizola, Paula ; Muggli, Alexandra ; Macaya, Irati ; O’Dell, Michael ; Ruiz-Fernandez de Cordoba, Borja ; Ortiz-Espinosa, Sergio ; Hezel, Aram F. ; Arozarena, Imanol ; Lecanda, Fernando ; Avila, Matias A. ; Fernandez-Barrena, Maite G. ; Evert, Matthias ; Ponz-Sarvise, Mariano ; Calvisi, Diego F. ; Banales, Jesus M. ; Vicent, Silve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a0d8c19d3b2cc26981333e500c005bab60d69a7dec7a2ea7b55af19a62faaa3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Bile ducts</topic><topic>Biliary tract</topic><topic>Cell cycle</topic><topic>Cell proliferation</topic><topic>Cholangiocarcinoma</topic><topic>Cholangiocarcinoma - diagnosis</topic><topic>Cholangiocarcinoma - etiology</topic><topic>Cholangiocarcinoma - genetics</topic><topic>Chromatin</topic><topic>Epigenetics</topic><topic>Female</topic><topic>FOSL1</topic><topic>Genetic engineering</topic><topic>genetics</topic><topic>Humans</topic><topic>Hydroxymethylglutaryl-CoA Synthase - drug effects</topic><topic>Hydroxymethylglutaryl-CoA Synthase - genetics</topic><topic>Immunoprecipitation</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Molecular modelling</topic><topic>Proto-Oncogene Proteins c-fos - adverse effects</topic><topic>Proto-Oncogene Proteins c-fos - genetics</topic><topic>Signal transduction</topic><topic>targeted therapies</topic><topic>Transcription factors</topic><topic>Transcriptional Activation - drug effects</topic><topic>Transcriptional Activation - genetics</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallejo, Adrián</creatorcontrib><creatorcontrib>Erice, Oihane</creatorcontrib><creatorcontrib>Entrialgo-Cadierno, Rodrigo</creatorcontrib><creatorcontrib>Feliu, Iker</creatorcontrib><creatorcontrib>Guruceaga, Elizabeth</creatorcontrib><creatorcontrib>Perugorria, Maria J.</creatorcontrib><creatorcontrib>Olaizola, Paula</creatorcontrib><creatorcontrib>Muggli, Alexandra</creatorcontrib><creatorcontrib>Macaya, Irati</creatorcontrib><creatorcontrib>O’Dell, Michael</creatorcontrib><creatorcontrib>Ruiz-Fernandez de Cordoba, Borja</creatorcontrib><creatorcontrib>Ortiz-Espinosa, Sergio</creatorcontrib><creatorcontrib>Hezel, Aram F.</creatorcontrib><creatorcontrib>Arozarena, Imanol</creatorcontrib><creatorcontrib>Lecanda, Fernando</creatorcontrib><creatorcontrib>Avila, Matias A.</creatorcontrib><creatorcontrib>Fernandez-Barrena, Maite G.</creatorcontrib><creatorcontrib>Evert, Matthias</creatorcontrib><creatorcontrib>Ponz-Sarvise, Mariano</creatorcontrib><creatorcontrib>Calvisi, Diego F.</creatorcontrib><creatorcontrib>Banales, Jesus M.</creatorcontrib><creatorcontrib>Vicent, Silve</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallejo, Adrián</au><au>Erice, Oihane</au><au>Entrialgo-Cadierno, Rodrigo</au><au>Feliu, Iker</au><au>Guruceaga, Elizabeth</au><au>Perugorria, Maria J.</au><au>Olaizola, Paula</au><au>Muggli, Alexandra</au><au>Macaya, Irati</au><au>O’Dell, Michael</au><au>Ruiz-Fernandez de Cordoba, Borja</au><au>Ortiz-Espinosa, Sergio</au><au>Hezel, Aram F.</au><au>Arozarena, Imanol</au><au>Lecanda, Fernando</au><au>Avila, Matias A.</au><au>Fernandez-Barrena, Maite G.</au><au>Evert, Matthias</au><au>Ponz-Sarvise, Mariano</au><au>Calvisi, Diego F.</au><au>Banales, Jesus M.</au><au>Vicent, Silve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted</atitle><jtitle>Journal of hepatology</jtitle><addtitle>J Hepatol</addtitle><date>2021-08</date><risdate>2021</risdate><volume>75</volume><issue>2</issue><spage>363</spage><epage>376</epage><pages>363-376</pages><issn>0168-8278</issn><eissn>1600-0641</eissn><abstract>Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention. [Display omitted] •The transcription factor FOSL1 is upregulated in human and mouse CCA, and is independently associated with patient survival.•Genetic FOSL1 inhibition impairs cell proliferation and cell cycle progression in vitro, and tumor initiation and maintenance in vivo.•The mevalonate pathway gene HMGCS1 is upregulated in human and mouse CCA, and its expression is controlled by direct FOSL1 promoter binding.•Genetic HMGCS1 abrogation or pharmacological blockade with mTOR inhibitors phenocopies loss of FOSL1.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33887357</pmid><doi>10.1016/j.jhep.2021.03.028</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-8278
ispartof Journal of hepatology, 2021-08, Vol.75 (2), p.363-376
issn 0168-8278
1600-0641
language eng
recordid cdi_proquest_miscellaneous_2518546378
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aged
Bile ducts
Biliary tract
Cell cycle
Cell proliferation
Cholangiocarcinoma
Cholangiocarcinoma - diagnosis
Cholangiocarcinoma - etiology
Cholangiocarcinoma - genetics
Chromatin
Epigenetics
Female
FOSL1
Genetic engineering
genetics
Humans
Hydroxymethylglutaryl-CoA Synthase - drug effects
Hydroxymethylglutaryl-CoA Synthase - genetics
Immunoprecipitation
Male
Middle Aged
Molecular modelling
Proto-Oncogene Proteins c-fos - adverse effects
Proto-Oncogene Proteins c-fos - genetics
Signal transduction
targeted therapies
Transcription factors
Transcriptional Activation - drug effects
Transcriptional Activation - genetics
Tumors
Xenografts
title FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FOSL1%20promotes%20cholangiocarcinoma%20via%20transcriptional%20effectors%20that%20could%20be%20therapeutically%20targeted&rft.jtitle=Journal%20of%20hepatology&rft.au=Vallejo,%20Adri%C3%A1n&rft.date=2021-08&rft.volume=75&rft.issue=2&rft.spage=363&rft.epage=376&rft.pages=363-376&rft.issn=0168-8278&rft.eissn=1600-0641&rft_id=info:doi/10.1016/j.jhep.2021.03.028&rft_dat=%3Cproquest_cross%3E2568307058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568307058&rft_id=info:pmid/33887357&rft_els_id=S016882782100235X&rfr_iscdi=true