High-rate nanofluidic energy absorption in porous zeolitic frameworks

Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-07, Vol.20 (7), p.1015-1023
Hauptverfasser: Sun, Yueting, Rogge, Sven M. J., Lamaire, Aran, Vandenbrande, Steven, Wieme, Jelle, Siviour, Clive R., Van Speybroeck, Veronique, Tan, Jin-Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 7
container_start_page 1015
container_title Nature materials
container_volume 20
creator Sun, Yueting
Rogge, Sven M. J.
Lamaire, Aran
Vandenbrande, Steven
Wieme, Jelle
Siviour, Clive R.
Van Speybroeck, Veronique
Tan, Jin-Chong
description Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications. Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials.
doi_str_mv 10.1038/s41563-021-00977-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518545930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546399120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWgL_tjKgqFKkSC8yWk9glJYmDnQiVX49LCkgMTHfSPffe6QHgHMFrBIm8CRQxTlKIUQphJkTKD8AUUcFTyjk83PcIYTwBJyFsYCQZ48dgQoiUMoN4ChbLav2Set2bpNWts_VQlVWRmNb49TbReXC-6yvXJlWbdM67ISQfxtVVHyHrdWPenX8Np-DI6jqYs32dgee7xdN8ma4e7x_mt6u0IIL1qRDIllKXJicIMiEwRFRSYYQoMk5LjCyUGSultIU0mllSQCzKXMPcilKTnMzA1Zjbefc2mNCrpgqFqWvdmviawgxJRllGYEQv_6AbN_g2fhcpykmWIbyj8EgV3oXgjVWdrxrttwpBtZOsRskqqlNfkhWPSxf76CFvTPmz8m01AmQEQhy1a-N_b_8T-wlGUoc6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546399120</pqid></control><display><type>article</type><title>High-rate nanofluidic energy absorption in porous zeolitic frameworks</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Sun, Yueting ; Rogge, Sven M. J. ; Lamaire, Aran ; Vandenbrande, Steven ; Wieme, Jelle ; Siviour, Clive R. ; Van Speybroeck, Veronique ; Tan, Jin-Chong</creator><creatorcontrib>Sun, Yueting ; Rogge, Sven M. J. ; Lamaire, Aran ; Vandenbrande, Steven ; Wieme, Jelle ; Siviour, Clive R. ; Van Speybroeck, Veronique ; Tan, Jin-Chong</creatorcontrib><description>Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications. Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00977-6</identifier><identifier>PMID: 33888902</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/166/988 ; 639/301/1005/190 ; 639/301/1034/1035 ; 639/301/299/1013 ; 639/301/357/537 ; Absorbers ; Absorption ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Energy ; Energy absorption ; Energy storage ; Extrusion rate ; Fluidics ; Hydrophobic and Hydrophilic Interactions ; Intrusion ; Materials Science ; Metal-organic frameworks ; Microfluidic Analytical Techniques - methods ; Molecular Dynamics Simulation ; Nanofluids ; Nanotechnology ; Optical and Electronic Materials ; Porosity ; Porous materials ; Storage capacity ; Water ; Water infiltration ; Water transport ; Zeolites ; Zeolites - chemistry</subject><ispartof>Nature materials, 2021-07, Vol.20 (7), p.1015-1023</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</citedby><cites>FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</cites><orcidid>0000-0003-0093-5490 ; 0000-0002-4841-2608 ; 0000-0003-1929-5577 ; 0000-0002-5770-408X ; 0000-0003-2206-178X ; 0000-0003-4493-5708 ; 0000-0003-2970-4485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00977-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00977-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33888902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yueting</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Lamaire, Aran</creatorcontrib><creatorcontrib>Vandenbrande, Steven</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Siviour, Clive R.</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><creatorcontrib>Tan, Jin-Chong</creatorcontrib><title>High-rate nanofluidic energy absorption in porous zeolitic frameworks</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications. Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials.</description><subject>119/118</subject><subject>639/166/988</subject><subject>639/301/1005/190</subject><subject>639/301/1034/1035</subject><subject>639/301/299/1013</subject><subject>639/301/357/537</subject><subject>Absorbers</subject><subject>Absorption</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Energy storage</subject><subject>Extrusion rate</subject><subject>Fluidics</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intrusion</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanofluids</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Storage capacity</subject><subject>Water</subject><subject>Water infiltration</subject><subject>Water transport</subject><subject>Zeolites</subject><subject>Zeolites - chemistry</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWgL_tjKgqFKkSC8yWk9glJYmDnQiVX49LCkgMTHfSPffe6QHgHMFrBIm8CRQxTlKIUQphJkTKD8AUUcFTyjk83PcIYTwBJyFsYCQZ48dgQoiUMoN4ChbLav2Set2bpNWts_VQlVWRmNb49TbReXC-6yvXJlWbdM67ISQfxtVVHyHrdWPenX8Np-DI6jqYs32dgee7xdN8ma4e7x_mt6u0IIL1qRDIllKXJicIMiEwRFRSYYQoMk5LjCyUGSultIU0mllSQCzKXMPcilKTnMzA1Zjbefc2mNCrpgqFqWvdmviawgxJRllGYEQv_6AbN_g2fhcpykmWIbyj8EgV3oXgjVWdrxrttwpBtZOsRskqqlNfkhWPSxf76CFvTPmz8m01AmQEQhy1a-N_b_8T-wlGUoc6</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Sun, Yueting</creator><creator>Rogge, Sven M. J.</creator><creator>Lamaire, Aran</creator><creator>Vandenbrande, Steven</creator><creator>Wieme, Jelle</creator><creator>Siviour, Clive R.</creator><creator>Van Speybroeck, Veronique</creator><creator>Tan, Jin-Chong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0093-5490</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid><orcidid>https://orcid.org/0000-0003-1929-5577</orcidid><orcidid>https://orcid.org/0000-0002-5770-408X</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2970-4485</orcidid></search><sort><creationdate>20210701</creationdate><title>High-rate nanofluidic energy absorption in porous zeolitic frameworks</title><author>Sun, Yueting ; Rogge, Sven M. J. ; Lamaire, Aran ; Vandenbrande, Steven ; Wieme, Jelle ; Siviour, Clive R. ; Van Speybroeck, Veronique ; Tan, Jin-Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>639/166/988</topic><topic>639/301/1005/190</topic><topic>639/301/1034/1035</topic><topic>639/301/299/1013</topic><topic>639/301/357/537</topic><topic>Absorbers</topic><topic>Absorption</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Energy storage</topic><topic>Extrusion rate</topic><topic>Fluidics</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intrusion</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanofluids</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Storage capacity</topic><topic>Water</topic><topic>Water infiltration</topic><topic>Water transport</topic><topic>Zeolites</topic><topic>Zeolites - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yueting</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Lamaire, Aran</creatorcontrib><creatorcontrib>Vandenbrande, Steven</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Siviour, Clive R.</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><creatorcontrib>Tan, Jin-Chong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yueting</au><au>Rogge, Sven M. J.</au><au>Lamaire, Aran</au><au>Vandenbrande, Steven</au><au>Wieme, Jelle</au><au>Siviour, Clive R.</au><au>Van Speybroeck, Veronique</au><au>Tan, Jin-Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-rate nanofluidic energy absorption in porous zeolitic frameworks</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>7</issue><spage>1015</spage><epage>1023</epage><pages>1015-1023</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications. Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33888902</pmid><doi>10.1038/s41563-021-00977-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0093-5490</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid><orcidid>https://orcid.org/0000-0003-1929-5577</orcidid><orcidid>https://orcid.org/0000-0002-5770-408X</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2970-4485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2021-07, Vol.20 (7), p.1015-1023
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2518545930
source MEDLINE; SpringerLink Journals; Nature
subjects 119/118
639/166/988
639/301/1005/190
639/301/1034/1035
639/301/299/1013
639/301/357/537
Absorbers
Absorption
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Energy
Energy absorption
Energy storage
Extrusion rate
Fluidics
Hydrophobic and Hydrophilic Interactions
Intrusion
Materials Science
Metal-organic frameworks
Microfluidic Analytical Techniques - methods
Molecular Dynamics Simulation
Nanofluids
Nanotechnology
Optical and Electronic Materials
Porosity
Porous materials
Storage capacity
Water
Water infiltration
Water transport
Zeolites
Zeolites - chemistry
title High-rate nanofluidic energy absorption in porous zeolitic frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-rate%20nanofluidic%20energy%20absorption%20in%20porous%20zeolitic%20frameworks&rft.jtitle=Nature%20materials&rft.au=Sun,%20Yueting&rft.date=2021-07-01&rft.volume=20&rft.issue=7&rft.spage=1015&rft.epage=1023&rft.pages=1015-1023&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00977-6&rft_dat=%3Cproquest_cross%3E2546399120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546399120&rft_id=info:pmid/33888902&rfr_iscdi=true