High-rate nanofluidic energy absorption in porous zeolitic frameworks
Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their f...
Gespeichert in:
Veröffentlicht in: | Nature materials 2021-07, Vol.20 (7), p.1015-1023 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 7 |
container_start_page | 1015 |
container_title | Nature materials |
container_volume | 20 |
creator | Sun, Yueting Rogge, Sven M. J. Lamaire, Aran Vandenbrande, Steven Wieme, Jelle Siviour, Clive R. Van Speybroeck, Veronique Tan, Jin-Chong |
description | Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications.
Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials. |
doi_str_mv | 10.1038/s41563-021-00977-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518545930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546399120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWgL_tjKgqFKkSC8yWk9glJYmDnQiVX49LCkgMTHfSPffe6QHgHMFrBIm8CRQxTlKIUQphJkTKD8AUUcFTyjk83PcIYTwBJyFsYCQZ48dgQoiUMoN4ChbLav2Set2bpNWts_VQlVWRmNb49TbReXC-6yvXJlWbdM67ISQfxtVVHyHrdWPenX8Np-DI6jqYs32dgee7xdN8ma4e7x_mt6u0IIL1qRDIllKXJicIMiEwRFRSYYQoMk5LjCyUGSultIU0mllSQCzKXMPcilKTnMzA1Zjbefc2mNCrpgqFqWvdmviawgxJRllGYEQv_6AbN_g2fhcpykmWIbyj8EgV3oXgjVWdrxrttwpBtZOsRskqqlNfkhWPSxf76CFvTPmz8m01AmQEQhy1a-N_b_8T-wlGUoc6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546399120</pqid></control><display><type>article</type><title>High-rate nanofluidic energy absorption in porous zeolitic frameworks</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Sun, Yueting ; Rogge, Sven M. J. ; Lamaire, Aran ; Vandenbrande, Steven ; Wieme, Jelle ; Siviour, Clive R. ; Van Speybroeck, Veronique ; Tan, Jin-Chong</creator><creatorcontrib>Sun, Yueting ; Rogge, Sven M. J. ; Lamaire, Aran ; Vandenbrande, Steven ; Wieme, Jelle ; Siviour, Clive R. ; Van Speybroeck, Veronique ; Tan, Jin-Chong</creatorcontrib><description>Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications.
Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-00977-6</identifier><identifier>PMID: 33888902</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/166/988 ; 639/301/1005/190 ; 639/301/1034/1035 ; 639/301/299/1013 ; 639/301/357/537 ; Absorbers ; Absorption ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Energy ; Energy absorption ; Energy storage ; Extrusion rate ; Fluidics ; Hydrophobic and Hydrophilic Interactions ; Intrusion ; Materials Science ; Metal-organic frameworks ; Microfluidic Analytical Techniques - methods ; Molecular Dynamics Simulation ; Nanofluids ; Nanotechnology ; Optical and Electronic Materials ; Porosity ; Porous materials ; Storage capacity ; Water ; Water infiltration ; Water transport ; Zeolites ; Zeolites - chemistry</subject><ispartof>Nature materials, 2021-07, Vol.20 (7), p.1015-1023</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</citedby><cites>FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</cites><orcidid>0000-0003-0093-5490 ; 0000-0002-4841-2608 ; 0000-0003-1929-5577 ; 0000-0002-5770-408X ; 0000-0003-2206-178X ; 0000-0003-4493-5708 ; 0000-0003-2970-4485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-00977-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-00977-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33888902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yueting</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Lamaire, Aran</creatorcontrib><creatorcontrib>Vandenbrande, Steven</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Siviour, Clive R.</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><creatorcontrib>Tan, Jin-Chong</creatorcontrib><title>High-rate nanofluidic energy absorption in porous zeolitic frameworks</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications.
Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials.</description><subject>119/118</subject><subject>639/166/988</subject><subject>639/301/1005/190</subject><subject>639/301/1034/1035</subject><subject>639/301/299/1013</subject><subject>639/301/357/537</subject><subject>Absorbers</subject><subject>Absorption</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Energy absorption</subject><subject>Energy storage</subject><subject>Extrusion rate</subject><subject>Fluidics</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intrusion</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanofluids</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Storage capacity</subject><subject>Water</subject><subject>Water infiltration</subject><subject>Water transport</subject><subject>Zeolites</subject><subject>Zeolites - chemistry</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWgL_tjKgqFKkSC8yWk9glJYmDnQiVX49LCkgMTHfSPffe6QHgHMFrBIm8CRQxTlKIUQphJkTKD8AUUcFTyjk83PcIYTwBJyFsYCQZ48dgQoiUMoN4ChbLav2Set2bpNWts_VQlVWRmNb49TbReXC-6yvXJlWbdM67ISQfxtVVHyHrdWPenX8Np-DI6jqYs32dgee7xdN8ma4e7x_mt6u0IIL1qRDIllKXJicIMiEwRFRSYYQoMk5LjCyUGSultIU0mllSQCzKXMPcilKTnMzA1Zjbefc2mNCrpgqFqWvdmviawgxJRllGYEQv_6AbN_g2fhcpykmWIbyj8EgV3oXgjVWdrxrttwpBtZOsRskqqlNfkhWPSxf76CFvTPmz8m01AmQEQhy1a-N_b_8T-wlGUoc6</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Sun, Yueting</creator><creator>Rogge, Sven M. J.</creator><creator>Lamaire, Aran</creator><creator>Vandenbrande, Steven</creator><creator>Wieme, Jelle</creator><creator>Siviour, Clive R.</creator><creator>Van Speybroeck, Veronique</creator><creator>Tan, Jin-Chong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0093-5490</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid><orcidid>https://orcid.org/0000-0003-1929-5577</orcidid><orcidid>https://orcid.org/0000-0002-5770-408X</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2970-4485</orcidid></search><sort><creationdate>20210701</creationdate><title>High-rate nanofluidic energy absorption in porous zeolitic frameworks</title><author>Sun, Yueting ; Rogge, Sven M. J. ; Lamaire, Aran ; Vandenbrande, Steven ; Wieme, Jelle ; Siviour, Clive R. ; Van Speybroeck, Veronique ; Tan, Jin-Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-771fd8adeb3105772014847e77c964d21f0895d88fc8ea5f3c027dba0bf7da3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>639/166/988</topic><topic>639/301/1005/190</topic><topic>639/301/1034/1035</topic><topic>639/301/299/1013</topic><topic>639/301/357/537</topic><topic>Absorbers</topic><topic>Absorption</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Energy absorption</topic><topic>Energy storage</topic><topic>Extrusion rate</topic><topic>Fluidics</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intrusion</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanofluids</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Storage capacity</topic><topic>Water</topic><topic>Water infiltration</topic><topic>Water transport</topic><topic>Zeolites</topic><topic>Zeolites - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yueting</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Lamaire, Aran</creatorcontrib><creatorcontrib>Vandenbrande, Steven</creatorcontrib><creatorcontrib>Wieme, Jelle</creatorcontrib><creatorcontrib>Siviour, Clive R.</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><creatorcontrib>Tan, Jin-Chong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yueting</au><au>Rogge, Sven M. J.</au><au>Lamaire, Aran</au><au>Vandenbrande, Steven</au><au>Wieme, Jelle</au><au>Siviour, Clive R.</au><au>Van Speybroeck, Veronique</au><au>Tan, Jin-Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-rate nanofluidic energy absorption in porous zeolitic frameworks</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>7</issue><spage>1015</spage><epage>1023</epage><pages>1015-1023</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications.
Porous materials can absorb energy by water infiltration, but studies at industrially relevant high-rate intrusions are rare. Here, high-rate experiments are performed on ZIFs showing high energy storage capacity, while molecular simulations allow design rules to be formulated for absorption materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33888902</pmid><doi>10.1038/s41563-021-00977-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0093-5490</orcidid><orcidid>https://orcid.org/0000-0002-4841-2608</orcidid><orcidid>https://orcid.org/0000-0003-1929-5577</orcidid><orcidid>https://orcid.org/0000-0002-5770-408X</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><orcidid>https://orcid.org/0000-0003-2970-4485</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2021-07, Vol.20 (7), p.1015-1023 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2518545930 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 119/118 639/166/988 639/301/1005/190 639/301/1034/1035 639/301/299/1013 639/301/357/537 Absorbers Absorption Biomaterials Chemistry and Materials Science Condensed Matter Physics Energy Energy absorption Energy storage Extrusion rate Fluidics Hydrophobic and Hydrophilic Interactions Intrusion Materials Science Metal-organic frameworks Microfluidic Analytical Techniques - methods Molecular Dynamics Simulation Nanofluids Nanotechnology Optical and Electronic Materials Porosity Porous materials Storage capacity Water Water infiltration Water transport Zeolites Zeolites - chemistry |
title | High-rate nanofluidic energy absorption in porous zeolitic frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-rate%20nanofluidic%20energy%20absorption%20in%20porous%20zeolitic%20frameworks&rft.jtitle=Nature%20materials&rft.au=Sun,%20Yueting&rft.date=2021-07-01&rft.volume=20&rft.issue=7&rft.spage=1015&rft.epage=1023&rft.pages=1015-1023&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-00977-6&rft_dat=%3Cproquest_cross%3E2546399120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546399120&rft_id=info:pmid/33888902&rfr_iscdi=true |