Development and application of a hillslope hydrologic model
A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 1991, Vol.14 (4), p.168-174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 4 |
container_start_page | 168 |
container_title | Advances in water resources |
container_volume | 14 |
creator | Blain, C.A. Milly, P.C.D. |
description | A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm
3/cm
3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam. |
doi_str_mv | 10.1016/0309-1708(91)90012-D |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25183613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>030917089190012D</els_id><sourcerecordid>308145774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AxddiOiimpe2SYMgyIxfILjRdUiTV41kmprUAf-9HWeYpa7e4p17uRxCjoFeAAV-SQsqcxC0PpNwLikFls93yARqwXLJK7FLJltknxyk9EEprUvBJuRqjkv0oV9gN2S6s5nue--MHlzostBmOnt33qeRwOz928bgw5sz2SJY9Idkr9U-4dHmTsnr3e3L7CF_er5_nN085bosxZAztAhSgG6EpNhWdSUsVtjopi3GFW1lpJbMFIyD5gi2tk3Fywb4-GNIoZiS03VvH8PnF6ZBLVwy6L3uMHwlxSqoCw7FvyAUggEDOoLlGjQxpBSxVX10Cx2_FVC1UqpWvtTKl5KgfpWq-Rg72fTrZLRvo-6MS9ssB1YxXvyHlZILxusRu15jOLpbOowqGYedQesimkHZ4P6e8wMsRZYf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13721210</pqid></control><display><type>article</type><title>Development and application of a hillslope hydrologic model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Blain, C.A. ; Milly, P.C.D.</creator><creatorcontrib>Blain, C.A. ; Milly, P.C.D.</creatorcontrib><description>A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm
3/cm
3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/0309-1708(91)90012-D</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Calibration ; Catchments ; Clay (material) ; Computation ; Computer simulation ; Conductivity ; Discharge ; Domains ; Earth sciences ; Earth, ocean, space ; Evapotranspiration ; Exact sciences and technology ; hillslope processes ; Hydraulics ; Hydrology ; Hydrology. Hydrogeology ; interflow ; lateral subsurface flow ; Loams ; macropores ; Mathematical models ; Porosity ; Precipitation ; Resources ; Soil moisture ; Soils ; streamflow ; Surficial geology</subject><ispartof>Advances in water resources, 1991, Vol.14 (4), p.168-174</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</citedby><cites>FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/030917089190012D$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4967268$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6125263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blain, C.A.</creatorcontrib><creatorcontrib>Milly, P.C.D.</creatorcontrib><title>Development and application of a hillslope hydrologic model</title><title>Advances in water resources</title><description>A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm
3/cm
3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Catchments</subject><subject>Clay (material)</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Discharge</subject><subject>Domains</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Evapotranspiration</subject><subject>Exact sciences and technology</subject><subject>hillslope processes</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>interflow</subject><subject>lateral subsurface flow</subject><subject>Loams</subject><subject>macropores</subject><subject>Mathematical models</subject><subject>Porosity</subject><subject>Precipitation</subject><subject>Resources</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>streamflow</subject><subject>Surficial geology</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-AxddiOiimpe2SYMgyIxfILjRdUiTV41kmprUAf-9HWeYpa7e4p17uRxCjoFeAAV-SQsqcxC0PpNwLikFls93yARqwXLJK7FLJltknxyk9EEprUvBJuRqjkv0oV9gN2S6s5nue--MHlzostBmOnt33qeRwOz928bgw5sz2SJY9Idkr9U-4dHmTsnr3e3L7CF_er5_nN085bosxZAztAhSgG6EpNhWdSUsVtjopi3GFW1lpJbMFIyD5gi2tk3Fywb4-GNIoZiS03VvH8PnF6ZBLVwy6L3uMHwlxSqoCw7FvyAUggEDOoLlGjQxpBSxVX10Cx2_FVC1UqpWvtTKl5KgfpWq-Rg72fTrZLRvo-6MS9ssB1YxXvyHlZILxusRu15jOLpbOowqGYedQesimkHZ4P6e8wMsRZYf</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Blain, C.A.</creator><creator>Milly, P.C.D.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>1991</creationdate><title>Development and application of a hillslope hydrologic model</title><author>Blain, C.A. ; Milly, P.C.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Catchments</topic><topic>Clay (material)</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Discharge</topic><topic>Domains</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Evapotranspiration</topic><topic>Exact sciences and technology</topic><topic>hillslope processes</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>interflow</topic><topic>lateral subsurface flow</topic><topic>Loams</topic><topic>macropores</topic><topic>Mathematical models</topic><topic>Porosity</topic><topic>Precipitation</topic><topic>Resources</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>streamflow</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blain, C.A.</creatorcontrib><creatorcontrib>Milly, P.C.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blain, C.A.</au><au>Milly, P.C.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and application of a hillslope hydrologic model</atitle><jtitle>Advances in water resources</jtitle><date>1991</date><risdate>1991</risdate><volume>14</volume><issue>4</issue><spage>168</spage><epage>174</epage><pages>168-174</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm
3/cm
3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0309-1708(91)90012-D</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1708 |
ispartof | Advances in water resources, 1991, Vol.14 (4), p.168-174 |
issn | 0309-1708 1872-9657 |
language | eng |
recordid | cdi_proquest_miscellaneous_25183613 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Accuracy Calibration Catchments Clay (material) Computation Computer simulation Conductivity Discharge Domains Earth sciences Earth, ocean, space Evapotranspiration Exact sciences and technology hillslope processes Hydraulics Hydrology Hydrology. Hydrogeology interflow lateral subsurface flow Loams macropores Mathematical models Porosity Precipitation Resources Soil moisture Soils streamflow Surficial geology |
title | Development and application of a hillslope hydrologic model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20application%20of%20a%20hillslope%20hydrologic%20model&rft.jtitle=Advances%20in%20water%20resources&rft.au=Blain,%20C.A.&rft.date=1991&rft.volume=14&rft.issue=4&rft.spage=168&rft.epage=174&rft.pages=168-174&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/0309-1708(91)90012-D&rft_dat=%3Cproquest_cross%3E308145774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13721210&rft_id=info:pmid/&rft_els_id=030917089190012D&rfr_iscdi=true |