Development and application of a hillslope hydrologic model

A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 1991, Vol.14 (4), p.168-174
Hauptverfasser: Blain, C.A., Milly, P.C.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 4
container_start_page 168
container_title Advances in water resources
container_volume 14
creator Blain, C.A.
Milly, P.C.D.
description A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm 3/cm 3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam.
doi_str_mv 10.1016/0309-1708(91)90012-D
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25183613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>030917089190012D</els_id><sourcerecordid>308145774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AxddiOiimpe2SYMgyIxfILjRdUiTV41kmprUAf-9HWeYpa7e4p17uRxCjoFeAAV-SQsqcxC0PpNwLikFls93yARqwXLJK7FLJltknxyk9EEprUvBJuRqjkv0oV9gN2S6s5nue--MHlzostBmOnt33qeRwOz928bgw5sz2SJY9Idkr9U-4dHmTsnr3e3L7CF_er5_nN085bosxZAztAhSgG6EpNhWdSUsVtjopi3GFW1lpJbMFIyD5gi2tk3Fywb4-GNIoZiS03VvH8PnF6ZBLVwy6L3uMHwlxSqoCw7FvyAUggEDOoLlGjQxpBSxVX10Cx2_FVC1UqpWvtTKl5KgfpWq-Rg72fTrZLRvo-6MS9ssB1YxXvyHlZILxusRu15jOLpbOowqGYedQesimkHZ4P6e8wMsRZYf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13721210</pqid></control><display><type>article</type><title>Development and application of a hillslope hydrologic model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Blain, C.A. ; Milly, P.C.D.</creator><creatorcontrib>Blain, C.A. ; Milly, P.C.D.</creatorcontrib><description>A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm 3/cm 3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/0309-1708(91)90012-D</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Calibration ; Catchments ; Clay (material) ; Computation ; Computer simulation ; Conductivity ; Discharge ; Domains ; Earth sciences ; Earth, ocean, space ; Evapotranspiration ; Exact sciences and technology ; hillslope processes ; Hydraulics ; Hydrology ; Hydrology. Hydrogeology ; interflow ; lateral subsurface flow ; Loams ; macropores ; Mathematical models ; Porosity ; Precipitation ; Resources ; Soil moisture ; Soils ; streamflow ; Surficial geology</subject><ispartof>Advances in water resources, 1991, Vol.14 (4), p.168-174</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</citedby><cites>FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/030917089190012D$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4967268$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6125263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blain, C.A.</creatorcontrib><creatorcontrib>Milly, P.C.D.</creatorcontrib><title>Development and application of a hillslope hydrologic model</title><title>Advances in water resources</title><description>A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm 3/cm 3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Catchments</subject><subject>Clay (material)</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>Discharge</subject><subject>Domains</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Evapotranspiration</subject><subject>Exact sciences and technology</subject><subject>hillslope processes</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>interflow</subject><subject>lateral subsurface flow</subject><subject>Loams</subject><subject>macropores</subject><subject>Mathematical models</subject><subject>Porosity</subject><subject>Precipitation</subject><subject>Resources</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>streamflow</subject><subject>Surficial geology</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-AxddiOiimpe2SYMgyIxfILjRdUiTV41kmprUAf-9HWeYpa7e4p17uRxCjoFeAAV-SQsqcxC0PpNwLikFls93yARqwXLJK7FLJltknxyk9EEprUvBJuRqjkv0oV9gN2S6s5nue--MHlzostBmOnt33qeRwOz928bgw5sz2SJY9Idkr9U-4dHmTsnr3e3L7CF_er5_nN085bosxZAztAhSgG6EpNhWdSUsVtjopi3GFW1lpJbMFIyD5gi2tk3Fywb4-GNIoZiS03VvH8PnF6ZBLVwy6L3uMHwlxSqoCw7FvyAUggEDOoLlGjQxpBSxVX10Cx2_FVC1UqpWvtTKl5KgfpWq-Rg72fTrZLRvo-6MS9ssB1YxXvyHlZILxusRu15jOLpbOowqGYedQesimkHZ4P6e8wMsRZYf</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Blain, C.A.</creator><creator>Milly, P.C.D.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>1991</creationdate><title>Development and application of a hillslope hydrologic model</title><author>Blain, C.A. ; Milly, P.C.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-2ede1971ab790ef5857de5ebabf3084f5c9a92c3261a6e1d8db564b1684f2e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Catchments</topic><topic>Clay (material)</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>Discharge</topic><topic>Domains</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Evapotranspiration</topic><topic>Exact sciences and technology</topic><topic>hillslope processes</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>interflow</topic><topic>lateral subsurface flow</topic><topic>Loams</topic><topic>macropores</topic><topic>Mathematical models</topic><topic>Porosity</topic><topic>Precipitation</topic><topic>Resources</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>streamflow</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blain, C.A.</creatorcontrib><creatorcontrib>Milly, P.C.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blain, C.A.</au><au>Milly, P.C.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and application of a hillslope hydrologic model</atitle><jtitle>Advances in water resources</jtitle><date>1991</date><risdate>1991</risdate><volume>14</volume><issue>4</issue><spage>168</spage><epage>174</epage><pages>168-174</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>A vertically integrated two-dimensional lateral flow model of soil moisture has been developed. Derivation of the governing equation is based on a physical interpretation of hillslope processes. The lateral subsurface-flow model permits variability of precipitation and evapotranspiration, and allows arbitrary specification of soil-moisture retention properties. Variable slope, soil thickness, and saturation are all accommodated. The numerical solution method, a Crank-Nicolson, finite-difference, upstream-weighted scheme, is simple and robust. A small catchment in northeastern Kansas is the subject of an application of the lateral subsurface-flow model. Calibration of the model using observed discharge provides estimates of the active porosity (0.1 cm 3/cm 3) and of the saturated horizontal hydraulic conductivity (40 cm/hr). The latter figure is at least an order of magnitude greater than the vertical hydraulic conductivity associated with the silty clay loam soil matrix. The large value of hydraulic conductivity derived from the calibration is suggestive of macropore-dominated hillslope drainage. The corresponding value of active porosity agrees well with a published average value of the difference between total porosity and field capacity for a silty clay loam.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0309-1708(91)90012-D</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 1991, Vol.14 (4), p.168-174
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_miscellaneous_25183613
source Elsevier ScienceDirect Journals Complete
subjects Accuracy
Calibration
Catchments
Clay (material)
Computation
Computer simulation
Conductivity
Discharge
Domains
Earth sciences
Earth, ocean, space
Evapotranspiration
Exact sciences and technology
hillslope processes
Hydraulics
Hydrology
Hydrology. Hydrogeology
interflow
lateral subsurface flow
Loams
macropores
Mathematical models
Porosity
Precipitation
Resources
Soil moisture
Soils
streamflow
Surficial geology
title Development and application of a hillslope hydrologic model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20application%20of%20a%20hillslope%20hydrologic%20model&rft.jtitle=Advances%20in%20water%20resources&rft.au=Blain,%20C.A.&rft.date=1991&rft.volume=14&rft.issue=4&rft.spage=168&rft.epage=174&rft.pages=168-174&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/0309-1708(91)90012-D&rft_dat=%3Cproquest_cross%3E308145774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13721210&rft_id=info:pmid/&rft_els_id=030917089190012D&rfr_iscdi=true