Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor
The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2021-07, Vol.29 (7), p.679-693.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 693.e6 |
---|---|
container_issue | 7 |
container_start_page | 679 |
container_title | Structure (London) |
container_volume | 29 |
creator | Smit, Florent X. van der Velden, Wijnand J.C. Kizilkaya, Hüsün S. Nørskov, Amalie Lückmann, Michael Hansen, Tobias N. Sparre-Ulrich, Alexander H. Qvotrup, Katrine Frimurer, Thomas M. Rosenkilde, Mette M. |
description | The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.
[Display omitted]
•A complete mapping of GIP's distinct binding profile is presented•R1832.60, R1902.67, and R3005.40 likely play a key role in the activation of the GIPR•Disruption of the K293ECL2-E362ECL3 salt bridge could suppress GIPR activation•GIPR antagonists' action relies on a multifaceted inhibition of the receptor
Smit et al. look at the relation between the structure and function of GIP and its receptor; proteins involved in energy expenditure and fat deposition. By pointing out residues that play a role in activation or debilitation of the receptor, Smit et al. hope to advance drug design efforts. |
doi_str_mv | 10.1016/j.str.2021.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518222017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212621001179</els_id><sourcerecordid>2518222017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2ed96916b135fd2997b653c0e23dbd2ae4e5fc7e161d348eb300a16b933930f93</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobn78AG-kl3rRepK0XaNXQ3QOhorodUiT05HRtTNJB_57M6ZeehUOPOc9eR9CLihkFGh5s8p8cBkDRjPIMwB6QMa0mlRpTqvykIxBlCJllJUjcuL9CgBYAXBMRpxXIiL5mDzPuy36YJcq2G6ZzOavb8mV6sK1Wvad9evbZJrEI4MOg1NtojrVfnnrk77ZsXE2iQ0-cahxE3p3Ro4a1Xo8_3lPycfjw_v9U7p4mc3vp4tUc1GGlKGJX6NlTXnRGCbEpC4LrgEZN7VhCnMsGj1BWlLD8wprDqAiLjgXHBrBT8nVPnfj-s8hFpBr6zW2reqwH7xkBa0YY0AnEaV7VLvee4eN3Di7Vu5LUpA7jXIlY0O50yghl1Fj3Ln8iR_qNZq_jV9vEbjbAxhLbi066bXFTqOxUUWQprf_xH8DI7uBoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518222017</pqid></control><display><type>article</type><title>Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Smit, Florent X. ; van der Velden, Wijnand J.C. ; Kizilkaya, Hüsün S. ; Nørskov, Amalie ; Lückmann, Michael ; Hansen, Tobias N. ; Sparre-Ulrich, Alexander H. ; Qvotrup, Katrine ; Frimurer, Thomas M. ; Rosenkilde, Mette M.</creator><creatorcontrib>Smit, Florent X. ; van der Velden, Wijnand J.C. ; Kizilkaya, Hüsün S. ; Nørskov, Amalie ; Lückmann, Michael ; Hansen, Tobias N. ; Sparre-Ulrich, Alexander H. ; Qvotrup, Katrine ; Frimurer, Thomas M. ; Rosenkilde, Mette M.</creatorcontrib><description>The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.
[Display omitted]
•A complete mapping of GIP's distinct binding profile is presented•R1832.60, R1902.67, and R3005.40 likely play a key role in the activation of the GIPR•Disruption of the K293ECL2-E362ECL3 salt bridge could suppress GIPR activation•GIPR antagonists' action relies on a multifaceted inhibition of the receptor
Smit et al. look at the relation between the structure and function of GIP and its receptor; proteins involved in energy expenditure and fat deposition. By pointing out residues that play a role in activation or debilitation of the receptor, Smit et al. hope to advance drug design efforts.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2021.04.001</identifier><identifier>PMID: 33891864</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>antagonism ; Binding Sites ; class B ; Gastric Inhibitory Polypeptide - metabolism ; GIP ; GIPR ; Glucagon-Like Peptide-1 Receptor - chemistry ; Glucagon-Like Peptide-1 Receptor - metabolism ; GPCR ; Humans ; Hydrogen Bonding ; incretin ; Models, Molecular ; molecular dynamics ; Molecular Dynamics Simulation ; Mutation ; Protein Conformation ; Receptors, Gastrointestinal Hormone - antagonists & inhibitors ; Receptors, Gastrointestinal Hormone - chemistry ; Receptors, Gastrointestinal Hormone - genetics ; Receptors, Gastrointestinal Hormone - metabolism ; structural analysis ; Structural Homology, Protein ; truncation</subject><ispartof>Structure (London), 2021-07, Vol.29 (7), p.679-693.e6</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2ed96916b135fd2997b653c0e23dbd2ae4e5fc7e161d348eb300a16b933930f93</citedby><cites>FETCH-LOGICAL-c396t-2ed96916b135fd2997b653c0e23dbd2ae4e5fc7e161d348eb300a16b933930f93</cites><orcidid>0000-0001-5278-532X ; 0000-0001-6098-058X ; 0000-0003-0785-3762 ; 0000-0002-9749-2720 ; 0000-0003-3828-2069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969212621001179$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33891864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smit, Florent X.</creatorcontrib><creatorcontrib>van der Velden, Wijnand J.C.</creatorcontrib><creatorcontrib>Kizilkaya, Hüsün S.</creatorcontrib><creatorcontrib>Nørskov, Amalie</creatorcontrib><creatorcontrib>Lückmann, Michael</creatorcontrib><creatorcontrib>Hansen, Tobias N.</creatorcontrib><creatorcontrib>Sparre-Ulrich, Alexander H.</creatorcontrib><creatorcontrib>Qvotrup, Katrine</creatorcontrib><creatorcontrib>Frimurer, Thomas M.</creatorcontrib><creatorcontrib>Rosenkilde, Mette M.</creatorcontrib><title>Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.
[Display omitted]
•A complete mapping of GIP's distinct binding profile is presented•R1832.60, R1902.67, and R3005.40 likely play a key role in the activation of the GIPR•Disruption of the K293ECL2-E362ECL3 salt bridge could suppress GIPR activation•GIPR antagonists' action relies on a multifaceted inhibition of the receptor
Smit et al. look at the relation between the structure and function of GIP and its receptor; proteins involved in energy expenditure and fat deposition. By pointing out residues that play a role in activation or debilitation of the receptor, Smit et al. hope to advance drug design efforts.</description><subject>antagonism</subject><subject>Binding Sites</subject><subject>class B</subject><subject>Gastric Inhibitory Polypeptide - metabolism</subject><subject>GIP</subject><subject>GIPR</subject><subject>Glucagon-Like Peptide-1 Receptor - chemistry</subject><subject>Glucagon-Like Peptide-1 Receptor - metabolism</subject><subject>GPCR</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>incretin</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Receptors, Gastrointestinal Hormone - antagonists & inhibitors</subject><subject>Receptors, Gastrointestinal Hormone - chemistry</subject><subject>Receptors, Gastrointestinal Hormone - genetics</subject><subject>Receptors, Gastrointestinal Hormone - metabolism</subject><subject>structural analysis</subject><subject>Structural Homology, Protein</subject><subject>truncation</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobn78AG-kl3rRepK0XaNXQ3QOhorodUiT05HRtTNJB_57M6ZeehUOPOc9eR9CLihkFGh5s8p8cBkDRjPIMwB6QMa0mlRpTqvykIxBlCJllJUjcuL9CgBYAXBMRpxXIiL5mDzPuy36YJcq2G6ZzOavb8mV6sK1Wvad9evbZJrEI4MOg1NtojrVfnnrk77ZsXE2iQ0-cahxE3p3Ro4a1Xo8_3lPycfjw_v9U7p4mc3vp4tUc1GGlKGJX6NlTXnRGCbEpC4LrgEZN7VhCnMsGj1BWlLD8wprDqAiLjgXHBrBT8nVPnfj-s8hFpBr6zW2reqwH7xkBa0YY0AnEaV7VLvee4eN3Di7Vu5LUpA7jXIlY0O50yghl1Fj3Ln8iR_qNZq_jV9vEbjbAxhLbi066bXFTqOxUUWQprf_xH8DI7uBoA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Smit, Florent X.</creator><creator>van der Velden, Wijnand J.C.</creator><creator>Kizilkaya, Hüsün S.</creator><creator>Nørskov, Amalie</creator><creator>Lückmann, Michael</creator><creator>Hansen, Tobias N.</creator><creator>Sparre-Ulrich, Alexander H.</creator><creator>Qvotrup, Katrine</creator><creator>Frimurer, Thomas M.</creator><creator>Rosenkilde, Mette M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5278-532X</orcidid><orcidid>https://orcid.org/0000-0001-6098-058X</orcidid><orcidid>https://orcid.org/0000-0003-0785-3762</orcidid><orcidid>https://orcid.org/0000-0002-9749-2720</orcidid><orcidid>https://orcid.org/0000-0003-3828-2069</orcidid></search><sort><creationdate>20210701</creationdate><title>Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor</title><author>Smit, Florent X. ; van der Velden, Wijnand J.C. ; Kizilkaya, Hüsün S. ; Nørskov, Amalie ; Lückmann, Michael ; Hansen, Tobias N. ; Sparre-Ulrich, Alexander H. ; Qvotrup, Katrine ; Frimurer, Thomas M. ; Rosenkilde, Mette M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2ed96916b135fd2997b653c0e23dbd2ae4e5fc7e161d348eb300a16b933930f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>antagonism</topic><topic>Binding Sites</topic><topic>class B</topic><topic>Gastric Inhibitory Polypeptide - metabolism</topic><topic>GIP</topic><topic>GIPR</topic><topic>Glucagon-Like Peptide-1 Receptor - chemistry</topic><topic>Glucagon-Like Peptide-1 Receptor - metabolism</topic><topic>GPCR</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>incretin</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Receptors, Gastrointestinal Hormone - antagonists & inhibitors</topic><topic>Receptors, Gastrointestinal Hormone - chemistry</topic><topic>Receptors, Gastrointestinal Hormone - genetics</topic><topic>Receptors, Gastrointestinal Hormone - metabolism</topic><topic>structural analysis</topic><topic>Structural Homology, Protein</topic><topic>truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smit, Florent X.</creatorcontrib><creatorcontrib>van der Velden, Wijnand J.C.</creatorcontrib><creatorcontrib>Kizilkaya, Hüsün S.</creatorcontrib><creatorcontrib>Nørskov, Amalie</creatorcontrib><creatorcontrib>Lückmann, Michael</creatorcontrib><creatorcontrib>Hansen, Tobias N.</creatorcontrib><creatorcontrib>Sparre-Ulrich, Alexander H.</creatorcontrib><creatorcontrib>Qvotrup, Katrine</creatorcontrib><creatorcontrib>Frimurer, Thomas M.</creatorcontrib><creatorcontrib>Rosenkilde, Mette M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smit, Florent X.</au><au>van der Velden, Wijnand J.C.</au><au>Kizilkaya, Hüsün S.</au><au>Nørskov, Amalie</au><au>Lückmann, Michael</au><au>Hansen, Tobias N.</au><au>Sparre-Ulrich, Alexander H.</au><au>Qvotrup, Katrine</au><au>Frimurer, Thomas M.</au><au>Rosenkilde, Mette M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>29</volume><issue>7</issue><spage>679</spage><epage>693.e6</epage><pages>679-693.e6</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.
[Display omitted]
•A complete mapping of GIP's distinct binding profile is presented•R1832.60, R1902.67, and R3005.40 likely play a key role in the activation of the GIPR•Disruption of the K293ECL2-E362ECL3 salt bridge could suppress GIPR activation•GIPR antagonists' action relies on a multifaceted inhibition of the receptor
Smit et al. look at the relation between the structure and function of GIP and its receptor; proteins involved in energy expenditure and fat deposition. By pointing out residues that play a role in activation or debilitation of the receptor, Smit et al. hope to advance drug design efforts.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33891864</pmid><doi>10.1016/j.str.2021.04.001</doi><orcidid>https://orcid.org/0000-0001-5278-532X</orcidid><orcidid>https://orcid.org/0000-0001-6098-058X</orcidid><orcidid>https://orcid.org/0000-0003-0785-3762</orcidid><orcidid>https://orcid.org/0000-0002-9749-2720</orcidid><orcidid>https://orcid.org/0000-0003-3828-2069</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2021-07, Vol.29 (7), p.679-693.e6 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_2518222017 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | antagonism Binding Sites class B Gastric Inhibitory Polypeptide - metabolism GIP GIPR Glucagon-Like Peptide-1 Receptor - chemistry Glucagon-Like Peptide-1 Receptor - metabolism GPCR Humans Hydrogen Bonding incretin Models, Molecular molecular dynamics Molecular Dynamics Simulation Mutation Protein Conformation Receptors, Gastrointestinal Hormone - antagonists & inhibitors Receptors, Gastrointestinal Hormone - chemistry Receptors, Gastrointestinal Hormone - genetics Receptors, Gastrointestinal Hormone - metabolism structural analysis Structural Homology, Protein truncation |
title | Investigating GIPR (ant)agonism: A structural analysis of GIP and its receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20GIPR%20(ant)agonism:%20A%20structural%20analysis%20of%20GIP%20and%20its%20receptor&rft.jtitle=Structure%20(London)&rft.au=Smit,%20Florent%20X.&rft.date=2021-07-01&rft.volume=29&rft.issue=7&rft.spage=679&rft.epage=693.e6&rft.pages=679-693.e6&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2021.04.001&rft_dat=%3Cproquest_cross%3E2518222017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518222017&rft_id=info:pmid/33891864&rft_els_id=S0969212621001179&rfr_iscdi=true |