Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream

Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-04, Vol.126 (14), p.143601-143601, Article 143601
Hauptverfasser: Steindl, P, Snijders, H, Westra, G, Hissink, E, Iakovlev, K, Polla, S, Frey, J A, Norman, J, Gossard, A C, Bowers, J E, Bouwmeester, D, Löffler, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143601
container_issue 14
container_start_page 143601
container_title Physical review letters
container_volume 126
creator Steindl, P
Snijders, H
Westra, G
Hissink, E
Iakovlev, K
Polla, S
Frey, J A
Norman, J
Gossard, A C
Bowers, J E
Bouwmeester, D
Löffler, W
description Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g^{(2)}(0)→1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.
doi_str_mv 10.1103/PhysRevLett.126.143601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518215815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518215815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d137d0fd71d715a58e81c9730f82770f8dba3b45c78794348e5ac871684f94a13</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_Qgl48bI1s8k2ybEUPwoVi9WDpyXdnW1Ttrs1yQr9925tFRGGmcM87zA8hPSBDQAYv52tdv4FP6cYwgDi4QAEHzI4IV1gUkcSQJySLmMcIs2Y7JAL79eMsRZV56TDudIgBHTJ-8gFW9jMmpKO6xU6rAKdBxPQ07qgU7tcBbrY0aemDHa7qkNd0UkV0BV7NENqK2ro3FbLEqPZYT8PDs3mkpwVpvR4dZw98nZ_9zp-jKbPD5PxaBplXMchyoHLnBW5hLYSkyhUkGnJWaFiKdueLwxfiCSTSmrBhcLEZErCUIlCCwO8R24Od7eu_mjQh3RjfYZlaSqsG5_GCagYEgVJi17_Q9d146r2u29KgNBMt9TwQGWu9t5hkW6d3Ri3S4Gle_npH_lpazQ9yG-D_eP5ZrHB_Df2Y5t_AWzPgdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518414909</pqid></control><display><type>article</type><title>Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Steindl, P ; Snijders, H ; Westra, G ; Hissink, E ; Iakovlev, K ; Polla, S ; Frey, J A ; Norman, J ; Gossard, A C ; Bowers, J E ; Bouwmeester, D ; Löffler, W</creator><creatorcontrib>Steindl, P ; Snijders, H ; Westra, G ; Hissink, E ; Iakovlev, K ; Polla, S ; Frey, J A ; Norman, J ; Gossard, A C ; Bowers, J E ; Bouwmeester, D ; Löffler, W</creatorcontrib><description>Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g^{(2)}(0)→1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.143601</identifier><identifier>PMID: 33891441</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Coherence ; Interference ; Photons ; Quantum dots ; Quantum entanglement ; Quantum mechanics</subject><ispartof>Physical review letters, 2021-04, Vol.126 (14), p.143601-143601, Article 143601</ispartof><rights>Copyright American Physical Society Apr 9, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d137d0fd71d715a58e81c9730f82770f8dba3b45c78794348e5ac871684f94a13</citedby><cites>FETCH-LOGICAL-c392t-d137d0fd71d715a58e81c9730f82770f8dba3b45c78794348e5ac871684f94a13</cites><orcidid>0000-0001-9059-9202 ; 0000-0003-3909-0448 ; 0000-0001-5311-646X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33891441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steindl, P</creatorcontrib><creatorcontrib>Snijders, H</creatorcontrib><creatorcontrib>Westra, G</creatorcontrib><creatorcontrib>Hissink, E</creatorcontrib><creatorcontrib>Iakovlev, K</creatorcontrib><creatorcontrib>Polla, S</creatorcontrib><creatorcontrib>Frey, J A</creatorcontrib><creatorcontrib>Norman, J</creatorcontrib><creatorcontrib>Gossard, A C</creatorcontrib><creatorcontrib>Bowers, J E</creatorcontrib><creatorcontrib>Bouwmeester, D</creatorcontrib><creatorcontrib>Löffler, W</creatorcontrib><title>Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g^{(2)}(0)→1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.</description><subject>Coherence</subject><subject>Interference</subject><subject>Photons</subject><subject>Quantum dots</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_Qgl48bI1s8k2ybEUPwoVi9WDpyXdnW1Ttrs1yQr9925tFRGGmcM87zA8hPSBDQAYv52tdv4FP6cYwgDi4QAEHzI4IV1gUkcSQJySLmMcIs2Y7JAL79eMsRZV56TDudIgBHTJ-8gFW9jMmpKO6xU6rAKdBxPQ07qgU7tcBbrY0aemDHa7qkNd0UkV0BV7NENqK2ro3FbLEqPZYT8PDs3mkpwVpvR4dZw98nZ_9zp-jKbPD5PxaBplXMchyoHLnBW5hLYSkyhUkGnJWaFiKdueLwxfiCSTSmrBhcLEZErCUIlCCwO8R24Od7eu_mjQh3RjfYZlaSqsG5_GCagYEgVJi17_Q9d146r2u29KgNBMt9TwQGWu9t5hkW6d3Ri3S4Gle_npH_lpazQ9yG-D_eP5ZrHB_Df2Y5t_AWzPgdI</recordid><startdate>20210409</startdate><enddate>20210409</enddate><creator>Steindl, P</creator><creator>Snijders, H</creator><creator>Westra, G</creator><creator>Hissink, E</creator><creator>Iakovlev, K</creator><creator>Polla, S</creator><creator>Frey, J A</creator><creator>Norman, J</creator><creator>Gossard, A C</creator><creator>Bowers, J E</creator><creator>Bouwmeester, D</creator><creator>Löffler, W</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9059-9202</orcidid><orcidid>https://orcid.org/0000-0003-3909-0448</orcidid><orcidid>https://orcid.org/0000-0001-5311-646X</orcidid></search><sort><creationdate>20210409</creationdate><title>Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream</title><author>Steindl, P ; Snijders, H ; Westra, G ; Hissink, E ; Iakovlev, K ; Polla, S ; Frey, J A ; Norman, J ; Gossard, A C ; Bowers, J E ; Bouwmeester, D ; Löffler, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d137d0fd71d715a58e81c9730f82770f8dba3b45c78794348e5ac871684f94a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coherence</topic><topic>Interference</topic><topic>Photons</topic><topic>Quantum dots</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steindl, P</creatorcontrib><creatorcontrib>Snijders, H</creatorcontrib><creatorcontrib>Westra, G</creatorcontrib><creatorcontrib>Hissink, E</creatorcontrib><creatorcontrib>Iakovlev, K</creatorcontrib><creatorcontrib>Polla, S</creatorcontrib><creatorcontrib>Frey, J A</creatorcontrib><creatorcontrib>Norman, J</creatorcontrib><creatorcontrib>Gossard, A C</creatorcontrib><creatorcontrib>Bowers, J E</creatorcontrib><creatorcontrib>Bouwmeester, D</creatorcontrib><creatorcontrib>Löffler, W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steindl, P</au><au>Snijders, H</au><au>Westra, G</au><au>Hissink, E</au><au>Iakovlev, K</au><au>Polla, S</au><au>Frey, J A</au><au>Norman, J</au><au>Gossard, A C</au><au>Bowers, J E</au><au>Bouwmeester, D</au><au>Löffler, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-04-09</date><risdate>2021</risdate><volume>126</volume><issue>14</issue><spage>143601</spage><epage>143601</epage><pages>143601-143601</pages><artnum>143601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g^{(2)}(0)→1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33891441</pmid><doi>10.1103/PhysRevLett.126.143601</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9059-9202</orcidid><orcidid>https://orcid.org/0000-0003-3909-0448</orcidid><orcidid>https://orcid.org/0000-0001-5311-646X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-04, Vol.126 (14), p.143601-143601, Article 143601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2518215815
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Coherence
Interference
Photons
Quantum dots
Quantum entanglement
Quantum mechanics
title Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Coherent%20States%20of%20Light%20by%20Multiphoton%20Interference%20in%20a%20Single-Photon%20Stream&rft.jtitle=Physical%20review%20letters&rft.au=Steindl,%20P&rft.date=2021-04-09&rft.volume=126&rft.issue=14&rft.spage=143601&rft.epage=143601&rft.pages=143601-143601&rft.artnum=143601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.143601&rft_dat=%3Cproquest_cross%3E2518215815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518414909&rft_id=info:pmid/33891441&rfr_iscdi=true