Cyclic hardening and substructure of AlMg alloys

The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1991-05, Vol.138 (1), p.49-61
Hauptverfasser: Grinberg, N.M., Serdyuk, V.A., Gavrilyako, A.M., Lychagin, D.V., Kozlov, E.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1
container_start_page 49
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 138
creator Grinberg, N.M.
Serdyuk, V.A.
Gavrilyako, A.M.
Lychagin, D.V.
Kozlov, E.V.
description The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions. On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions.
doi_str_mv 10.1016/0921-5093(91)90675-D
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25163320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>092150939190675D</els_id><sourcerecordid>25163320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhC0EEqVwAxbZgGAReI7tON4goZY_qYgNrC3HeQEjNyl2gtSTcBVOxRlIaQU7Vm8x38zTDCGHFM4o0PwcVEZTAYqdKHqqIJcinW6RES0kS7li-TYZ_SK7ZC_GVwCgHMSIsMnSemeTFxMqbFzznJimSmJfxi70tusDJm2dXPqvj8_7QfO-XcZ9slMbH_Fgc8fk6frqcXKbzh5u7iaXs9RmSnapoLWgSjEOlJaizqzkymBWS86EkqXklUWRS5B5ZqDMQXBUEtEoAYUqrGVjcrzOXYT2rcfY6bmLFr03DbZ91JmgOWMZDCBfgza0MQas9SK4uQlLTUGvFtKr-npVXyuqfxbS08F2tMk30RpfB9NYF_-8SgpVgBi4izWHQ9l3h0FH67CxWLmAttNV6_5_9A0oU3k6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25163320</pqid></control><display><type>article</type><title>Cyclic hardening and substructure of AlMg alloys</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Grinberg, N.M. ; Serdyuk, V.A. ; Gavrilyako, A.M. ; Lychagin, D.V. ; Kozlov, E.V.</creator><creatorcontrib>Grinberg, N.M. ; Serdyuk, V.A. ; Gavrilyako, A.M. ; Lychagin, D.V. ; Kozlov, E.V.</creatorcontrib><description>The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions. On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/0921-5093(91)90675-D</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Hardness ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 1991-05, Vol.138 (1), p.49-61</ispartof><rights>1991</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</citedby><cites>FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0921-5093(91)90675-D$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19759805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grinberg, N.M.</creatorcontrib><creatorcontrib>Serdyuk, V.A.</creatorcontrib><creatorcontrib>Gavrilyako, A.M.</creatorcontrib><creatorcontrib>Lychagin, D.V.</creatorcontrib><creatorcontrib>Kozlov, E.V.</creatorcontrib><title>Cyclic hardening and substructure of AlMg alloys</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions. On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Hardness</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhC0EEqVwAxbZgGAReI7tON4goZY_qYgNrC3HeQEjNyl2gtSTcBVOxRlIaQU7Vm8x38zTDCGHFM4o0PwcVEZTAYqdKHqqIJcinW6RES0kS7li-TYZ_SK7ZC_GVwCgHMSIsMnSemeTFxMqbFzznJimSmJfxi70tusDJm2dXPqvj8_7QfO-XcZ9slMbH_Fgc8fk6frqcXKbzh5u7iaXs9RmSnapoLWgSjEOlJaizqzkymBWS86EkqXklUWRS5B5ZqDMQXBUEtEoAYUqrGVjcrzOXYT2rcfY6bmLFr03DbZ91JmgOWMZDCBfgza0MQas9SK4uQlLTUGvFtKr-npVXyuqfxbS08F2tMk30RpfB9NYF_-8SgpVgBi4izWHQ9l3h0FH67CxWLmAttNV6_5_9A0oU3k6</recordid><startdate>19910530</startdate><enddate>19910530</enddate><creator>Grinberg, N.M.</creator><creator>Serdyuk, V.A.</creator><creator>Gavrilyako, A.M.</creator><creator>Lychagin, D.V.</creator><creator>Kozlov, E.V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19910530</creationdate><title>Cyclic hardening and substructure of AlMg alloys</title><author>Grinberg, N.M. ; Serdyuk, V.A. ; Gavrilyako, A.M. ; Lychagin, D.V. ; Kozlov, E.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Hardness</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinberg, N.M.</creatorcontrib><creatorcontrib>Serdyuk, V.A.</creatorcontrib><creatorcontrib>Gavrilyako, A.M.</creatorcontrib><creatorcontrib>Lychagin, D.V.</creatorcontrib><creatorcontrib>Kozlov, E.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinberg, N.M.</au><au>Serdyuk, V.A.</au><au>Gavrilyako, A.M.</au><au>Lychagin, D.V.</au><au>Kozlov, E.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic hardening and substructure of AlMg alloys</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>1991-05-30</date><risdate>1991</risdate><volume>138</volume><issue>1</issue><spage>49</spage><epage>61</epage><pages>49-61</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions. On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0921-5093(91)90675-D</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 1991-05, Vol.138 (1), p.49-61
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_25163320
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Exact sciences and technology
Hardness
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
title Cyclic hardening and substructure of AlMg alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20hardening%20and%20substructure%20of%20Al%EE%97%B8Mg%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Grinberg,%20N.M.&rft.date=1991-05-30&rft.volume=138&rft.issue=1&rft.spage=49&rft.epage=61&rft.pages=49-61&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/0921-5093(91)90675-D&rft_dat=%3Cproquest_cross%3E25163320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25163320&rft_id=info:pmid/&rft_els_id=092150939190675D&rfr_iscdi=true