Cyclic hardening and substructure of AlMg alloys
The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as func...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1991-05, Vol.138 (1), p.49-61 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 138 |
creator | Grinberg, N.M. Serdyuk, V.A. Gavrilyako, A.M. Lychagin, D.V. Kozlov, E.V. |
description | The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions.
On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions. |
doi_str_mv | 10.1016/0921-5093(91)90675-D |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25163320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>092150939190675D</els_id><sourcerecordid>25163320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhC0EEqVwAxbZgGAReI7tON4goZY_qYgNrC3HeQEjNyl2gtSTcBVOxRlIaQU7Vm8x38zTDCGHFM4o0PwcVEZTAYqdKHqqIJcinW6RES0kS7li-TYZ_SK7ZC_GVwCgHMSIsMnSemeTFxMqbFzznJimSmJfxi70tusDJm2dXPqvj8_7QfO-XcZ9slMbH_Fgc8fk6frqcXKbzh5u7iaXs9RmSnapoLWgSjEOlJaizqzkymBWS86EkqXklUWRS5B5ZqDMQXBUEtEoAYUqrGVjcrzOXYT2rcfY6bmLFr03DbZ91JmgOWMZDCBfgza0MQas9SK4uQlLTUGvFtKr-npVXyuqfxbS08F2tMk30RpfB9NYF_-8SgpVgBi4izWHQ9l3h0FH67CxWLmAttNV6_5_9A0oU3k6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25163320</pqid></control><display><type>article</type><title>Cyclic hardening and substructure of AlMg alloys</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Grinberg, N.M. ; Serdyuk, V.A. ; Gavrilyako, A.M. ; Lychagin, D.V. ; Kozlov, E.V.</creator><creatorcontrib>Grinberg, N.M. ; Serdyuk, V.A. ; Gavrilyako, A.M. ; Lychagin, D.V. ; Kozlov, E.V.</creatorcontrib><description>The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions.
On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/0921-5093(91)90675-D</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Hardness ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 1991-05, Vol.138 (1), p.49-61</ispartof><rights>1991</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</citedby><cites>FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0921-5093(91)90675-D$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19759805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grinberg, N.M.</creatorcontrib><creatorcontrib>Serdyuk, V.A.</creatorcontrib><creatorcontrib>Gavrilyako, A.M.</creatorcontrib><creatorcontrib>Lychagin, D.V.</creatorcontrib><creatorcontrib>Kozlov, E.V.</creatorcontrib><title>Cyclic hardening and substructure of AlMg alloys</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions.
On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Hardness</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhC0EEqVwAxbZgGAReI7tON4goZY_qYgNrC3HeQEjNyl2gtSTcBVOxRlIaQU7Vm8x38zTDCGHFM4o0PwcVEZTAYqdKHqqIJcinW6RES0kS7li-TYZ_SK7ZC_GVwCgHMSIsMnSemeTFxMqbFzznJimSmJfxi70tusDJm2dXPqvj8_7QfO-XcZ9slMbH_Fgc8fk6frqcXKbzh5u7iaXs9RmSnapoLWgSjEOlJaizqzkymBWS86EkqXklUWRS5B5ZqDMQXBUEtEoAYUqrGVjcrzOXYT2rcfY6bmLFr03DbZ91JmgOWMZDCBfgza0MQas9SK4uQlLTUGvFtKr-npVXyuqfxbS08F2tMk30RpfB9NYF_-8SgpVgBi4izWHQ9l3h0FH67CxWLmAttNV6_5_9A0oU3k6</recordid><startdate>19910530</startdate><enddate>19910530</enddate><creator>Grinberg, N.M.</creator><creator>Serdyuk, V.A.</creator><creator>Gavrilyako, A.M.</creator><creator>Lychagin, D.V.</creator><creator>Kozlov, E.V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19910530</creationdate><title>Cyclic hardening and substructure of AlMg alloys</title><author>Grinberg, N.M. ; Serdyuk, V.A. ; Gavrilyako, A.M. ; Lychagin, D.V. ; Kozlov, E.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-51f519934011b5f2c749ae2f743597b74dce5670762a0b6054e97eea950898cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Hardness</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinberg, N.M.</creatorcontrib><creatorcontrib>Serdyuk, V.A.</creatorcontrib><creatorcontrib>Gavrilyako, A.M.</creatorcontrib><creatorcontrib>Lychagin, D.V.</creatorcontrib><creatorcontrib>Kozlov, E.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinberg, N.M.</au><au>Serdyuk, V.A.</au><au>Gavrilyako, A.M.</au><au>Lychagin, D.V.</au><au>Kozlov, E.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic hardening and substructure of AlMg alloys</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>1991-05-30</date><risdate>1991</risdate><volume>138</volume><issue>1</issue><spage>49</spage><epage>61</epage><pages>49-61</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The dislocation substructure and macroscopic regularities of cyclic hardening of aluminium alloy AMg6 are studied in the low and high cycle fatigue regions. The density of dislocations and dislocation loops as well as the microhardnesses of the surface and the near-surface layer are measured as functions of the strain amplitude, the number of cycles, the environment and the temperature. It is found that, as the number of cycles increases, the quantitative evolution of the initial dislocation substructure occurs mainly in the near-surface layer and the cyclic hardening develops in two (the high amplitude region) or three (the low amplitude region) stages. The importance of each structural component is estimated in relation to hardening in these regions.
On the basis of our results and reports (on alloys with lower contents of magnesium) in the literature the effects of the stacking fault energy upon the substructures due to cyclic hardening of AlMg alloys are analysed in a wide range of magnesium contents (0–6.5 at.%) together with the difference between the substructures of these alloys and those of pure f.c.c. metals under similar conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0921-5093(91)90675-D</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 1991-05, Vol.138 (1), p.49-61 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_25163320 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Applied sciences Exact sciences and technology Hardness Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy |
title | Cyclic hardening and substructure of AlMg alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20hardening%20and%20substructure%20of%20Al%EE%97%B8Mg%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Grinberg,%20N.M.&rft.date=1991-05-30&rft.volume=138&rft.issue=1&rft.spage=49&rft.epage=61&rft.pages=49-61&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/0921-5093(91)90675-D&rft_dat=%3Cproquest_cross%3E25163320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25163320&rft_id=info:pmid/&rft_els_id=092150939190675D&rfr_iscdi=true |