Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels

An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p–n heterojunction is successfully constructed by the high electron mobi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-05, Vol.13 (17), p.20467-20478
Hauptverfasser: Yan, Wenqian, Liu, Yiming, Shao, Gaofeng, Zhu, Kunmeng, Cui, Sheng, Wang, Wei, Shen, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20478
container_issue 17
container_start_page 20467
container_title ACS applied materials & interfaces
container_volume 13
creator Yan, Wenqian
Liu, Yiming
Shao, Gaofeng
Zhu, Kunmeng
Cui, Sheng
Wang, Wei
Shen, Xiaodong
description An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p–n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of R a/R g = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S–C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S–C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.
doi_str_mv 10.1021/acsami.1c00302
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2516223526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516223526</sourcerecordid><originalsourceid>FETCH-LOGICAL-a219t-bb77fa652cdaec9cf1c6ee40f0596ebe64cd84778cdc4b4b3365c9ee70cf5b623</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKdXzzmK0JmkSboe65xTGOyweS7pl682o2tq04J__jo3PL3H4_F4_Ah55GzGmeAvBoI5uBkHxmImrsiEp1JGc6HE9b-X8pbchbBnTMeCqQlpFxUeHJiaboeuNIA0s8F3be98Q01j6a47hW_YI_xlvqRZDb7yNV2ZQF1DV51pK2yQbn6dxejVBLQ0A2ejZQ_V6LfNRtAMO_-NdbgnN6WpAz5cdEq-3pe7xUe03qw-F9k6MoKnfVQUSVIarQRYg5BCyUEjSlYylWosUEuwc5kkc7AgC1nEsVaQIiYMSlVoEU_J03m37fzPgKHPDy4A1rVp0A8hF4prIWIl9Fh9PldHgvneD10zHss5y09Y8zPW_II1PgLuKWyp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516223526</pqid></control><display><type>article</type><title>Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels</title><source>ACS Publications</source><creator>Yan, Wenqian ; Liu, Yiming ; Shao, Gaofeng ; Zhu, Kunmeng ; Cui, Sheng ; Wang, Wei ; Shen, Xiaodong</creator><creatorcontrib>Yan, Wenqian ; Liu, Yiming ; Shao, Gaofeng ; Zhu, Kunmeng ; Cui, Sheng ; Wang, Wei ; Shen, Xiaodong</creatorcontrib><description>An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p–n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of R a/R g = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S–C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S–C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c00302</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2021-05, Vol.13 (17), p.20467-20478</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1905-0695 ; 0000-0002-6741-0667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c00302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c00302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Yan, Wenqian</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Shao, Gaofeng</creatorcontrib><creatorcontrib>Zhu, Kunmeng</creatorcontrib><creatorcontrib>Cui, Sheng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Shen, Xiaodong</creatorcontrib><title>Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p–n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of R a/R g = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S–C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S–C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAYxYMoOKdXzzmK0JmkSboe65xTGOyweS7pl682o2tq04J__jo3PL3H4_F4_Ah55GzGmeAvBoI5uBkHxmImrsiEp1JGc6HE9b-X8pbchbBnTMeCqQlpFxUeHJiaboeuNIA0s8F3be98Q01j6a47hW_YI_xlvqRZDb7yNV2ZQF1DV51pK2yQbn6dxejVBLQ0A2ejZQ_V6LfNRtAMO_-NdbgnN6WpAz5cdEq-3pe7xUe03qw-F9k6MoKnfVQUSVIarQRYg5BCyUEjSlYylWosUEuwc5kkc7AgC1nEsVaQIiYMSlVoEU_J03m37fzPgKHPDy4A1rVp0A8hF4prIWIl9Fh9PldHgvneD10zHss5y09Y8zPW_II1PgLuKWyp</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>Yan, Wenqian</creator><creator>Liu, Yiming</creator><creator>Shao, Gaofeng</creator><creator>Zhu, Kunmeng</creator><creator>Cui, Sheng</creator><creator>Wang, Wei</creator><creator>Shen, Xiaodong</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1905-0695</orcidid><orcidid>https://orcid.org/0000-0002-6741-0667</orcidid></search><sort><creationdate>20210505</creationdate><title>Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels</title><author>Yan, Wenqian ; Liu, Yiming ; Shao, Gaofeng ; Zhu, Kunmeng ; Cui, Sheng ; Wang, Wei ; Shen, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a219t-bb77fa652cdaec9cf1c6ee40f0596ebe64cd84778cdc4b4b3365c9ee70cf5b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wenqian</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Shao, Gaofeng</creatorcontrib><creatorcontrib>Zhu, Kunmeng</creatorcontrib><creatorcontrib>Cui, Sheng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Shen, Xiaodong</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wenqian</au><au>Liu, Yiming</au><au>Shao, Gaofeng</au><au>Zhu, Kunmeng</au><au>Cui, Sheng</au><au>Wang, Wei</au><au>Shen, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-05-05</date><risdate>2021</risdate><volume>13</volume><issue>17</issue><spage>20467</spage><epage>20478</epage><pages>20467-20478</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>An acidified SnO2/rGO aerogel (ASGA) is an attractive contributor in ethanol gas sensing under ultralow concentration because of the sufficient active sites and adsorption pores in SnO2 and the rGA, respectively. Furthermore, a p–n heterojunction is successfully constructed by the high electron mobility between ASP and rGA to establish a brand-new bandgap of 2.72 eV, where more electrons are released and the surface energy is decreased, to improve the gas sensitivity. The ASGA owns a specific surface area of 256.1 m2/g, far higher than SnO2 powder (68.7 m2/g), indicating an excellent adsorption performance, so it can acquire more ethanol gas for a redox reaction. For gas-sensing ability, the ASGA exhibits an excellent response of R a/R g = 137.4 to 20 ppm of ethanol at the optimum temperature of 210 °C and can reach a response of 1.2 even at the limit detection concentration of 0.25 ppm. After the concentration gradient change test, a nonlinear increase between concentration and sensitivity (S–C curve) is observed, and it indirectly proves the chemical adsorption between ethanol and ASGA, which exhibits charge transfer and improves electron mobility. In addition, a detailed energy band diagram and sensor response diagram jointly depict the gas-sensitive mechanism. Finally, a conversed calculation explains the feasibility of the nonlinear S–C curve from the atomic level, which further verifies the chemical adsorption during the sensing process.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c00302</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1905-0695</orcidid><orcidid>https://orcid.org/0000-0002-6741-0667</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-05, Vol.13 (17), p.20467-20478
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2516223526
source ACS Publications
subjects Functional Nanostructured Materials (including low-D carbon)
title Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Surface%20Adsorption%20and%20Trace%20Detection%20of%20Alcohol%20Gas%20in%20Graphene%20Oxide-Based%20Acid-Etched%20SnO2%20Aerogels&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yan,%20Wenqian&rft.date=2021-05-05&rft.volume=13&rft.issue=17&rft.spage=20467&rft.epage=20478&rft.pages=20467-20478&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c00302&rft_dat=%3Cproquest_acs_j%3E2516223526%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516223526&rft_id=info:pmid/&rfr_iscdi=true