Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating

Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-05, Vol.13 (17), p.20479-20488
Hauptverfasser: König, Dirk, Frentzen, Michael, Wilck, Noël, Berghoff, Birger, Píš, Igor, Nappini, Silvia, Bondino, Federica, Müller, Merlin, Gonzalez, Sara, Di Santo, Giovanni, Petaccia, Luca, Mayer, Joachim, Smith, Sean, Knoch, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20488
container_issue 17
container_start_page 20479
container_title ACS applied materials & interfaces
container_volume 13
creator König, Dirk
Frentzen, Michael
Wilck, Noël
Berghoff, Birger
Píš, Igor
Nappini, Silvia
Bondino, Federica
Müller, Merlin
Gonzalez, Sara
Di Santo, Giovanni
Petaccia, Luca
Mayer, Joachim
Smith, Sean
Knoch, Joachim
description Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials.
doi_str_mv 10.1021/acsami.0c22360
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2516222225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516222225</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-414b0a35cf2b93428c84a15f63e07a368bbfee4a4c4fb9d18ebfe275c19e77533</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtXzzmKsDWf-3GUpbaFxYLWc8im2ZqSJrrJKv33pmxxLjMDDy8zDwD3GM0wIvhJqiAPZoYUITRHF2CCK8ayknBy-T8zdg1uQtgjlFOC-AS8bYbeGbeDjf_NXqXzQUmr4crF3rhgFHw31ijv4NLsPu0Rzq1Wsfcuq73bDiqaHw3bY6LWBNZexhR1C646aYO-O_cp-HiZb-pl1qwXq_q5ySSuaMwYZi2SlKuOtBVlpFQlk5h3OdWokDQv27bTmkmmWNdWW1zqtJOCK1zpouCUTsHDmPvV--9BhygOJihtrXTaD0EQjnNyKp7QxxFNjsTep5fTYQIjcRInRnHiLI7-Ab4JYhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516222225</pqid></control><display><type>article</type><title>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</title><source>ACS Publications</source><creator>König, Dirk ; Frentzen, Michael ; Wilck, Noël ; Berghoff, Birger ; Píš, Igor ; Nappini, Silvia ; Bondino, Federica ; Müller, Merlin ; Gonzalez, Sara ; Di Santo, Giovanni ; Petaccia, Luca ; Mayer, Joachim ; Smith, Sean ; Knoch, Joachim</creator><creatorcontrib>König, Dirk ; Frentzen, Michael ; Wilck, Noël ; Berghoff, Birger ; Píš, Igor ; Nappini, Silvia ; Bondino, Federica ; Müller, Merlin ; Gonzalez, Sara ; Di Santo, Giovanni ; Petaccia, Luca ; Mayer, Joachim ; Smith, Sean ; Knoch, Joachim</creatorcontrib><description>Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c22360</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2021-05, Vol.13 (17), p.20479-20488</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5679-8205 ; 0000-0002-7698-3539 ; 0000-0002-4944-5487 ; 0000-0001-8698-1468 ; 0000-0001-5485-9142 ; 0000-0001-6505-9319 ; 0000-0001-9394-2563 ; 0000-0002-5222-9291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c22360$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c22360$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>König, Dirk</creatorcontrib><creatorcontrib>Frentzen, Michael</creatorcontrib><creatorcontrib>Wilck, Noël</creatorcontrib><creatorcontrib>Berghoff, Birger</creatorcontrib><creatorcontrib>Píš, Igor</creatorcontrib><creatorcontrib>Nappini, Silvia</creatorcontrib><creatorcontrib>Bondino, Federica</creatorcontrib><creatorcontrib>Müller, Merlin</creatorcontrib><creatorcontrib>Gonzalez, Sara</creatorcontrib><creatorcontrib>Di Santo, Giovanni</creatorcontrib><creatorcontrib>Petaccia, Luca</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Smith, Sean</creatorcontrib><creatorcontrib>Knoch, Joachim</creatorcontrib><title>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtXzzmKsDWf-3GUpbaFxYLWc8im2ZqSJrrJKv33pmxxLjMDDy8zDwD3GM0wIvhJqiAPZoYUITRHF2CCK8ayknBy-T8zdg1uQtgjlFOC-AS8bYbeGbeDjf_NXqXzQUmr4crF3rhgFHw31ijv4NLsPu0Rzq1Wsfcuq73bDiqaHw3bY6LWBNZexhR1C646aYO-O_cp-HiZb-pl1qwXq_q5ySSuaMwYZi2SlKuOtBVlpFQlk5h3OdWokDQv27bTmkmmWNdWW1zqtJOCK1zpouCUTsHDmPvV--9BhygOJihtrXTaD0EQjnNyKp7QxxFNjsTep5fTYQIjcRInRnHiLI7-Ab4JYhs</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>König, Dirk</creator><creator>Frentzen, Michael</creator><creator>Wilck, Noël</creator><creator>Berghoff, Birger</creator><creator>Píš, Igor</creator><creator>Nappini, Silvia</creator><creator>Bondino, Federica</creator><creator>Müller, Merlin</creator><creator>Gonzalez, Sara</creator><creator>Di Santo, Giovanni</creator><creator>Petaccia, Luca</creator><creator>Mayer, Joachim</creator><creator>Smith, Sean</creator><creator>Knoch, Joachim</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5679-8205</orcidid><orcidid>https://orcid.org/0000-0002-7698-3539</orcidid><orcidid>https://orcid.org/0000-0002-4944-5487</orcidid><orcidid>https://orcid.org/0000-0001-8698-1468</orcidid><orcidid>https://orcid.org/0000-0001-5485-9142</orcidid><orcidid>https://orcid.org/0000-0001-6505-9319</orcidid><orcidid>https://orcid.org/0000-0001-9394-2563</orcidid><orcidid>https://orcid.org/0000-0002-5222-9291</orcidid></search><sort><creationdate>20210505</creationdate><title>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</title><author>König, Dirk ; Frentzen, Michael ; Wilck, Noël ; Berghoff, Birger ; Píš, Igor ; Nappini, Silvia ; Bondino, Federica ; Müller, Merlin ; Gonzalez, Sara ; Di Santo, Giovanni ; Petaccia, Luca ; Mayer, Joachim ; Smith, Sean ; Knoch, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-414b0a35cf2b93428c84a15f63e07a368bbfee4a4c4fb9d18ebfe275c19e77533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>König, Dirk</creatorcontrib><creatorcontrib>Frentzen, Michael</creatorcontrib><creatorcontrib>Wilck, Noël</creatorcontrib><creatorcontrib>Berghoff, Birger</creatorcontrib><creatorcontrib>Píš, Igor</creatorcontrib><creatorcontrib>Nappini, Silvia</creatorcontrib><creatorcontrib>Bondino, Federica</creatorcontrib><creatorcontrib>Müller, Merlin</creatorcontrib><creatorcontrib>Gonzalez, Sara</creatorcontrib><creatorcontrib>Di Santo, Giovanni</creatorcontrib><creatorcontrib>Petaccia, Luca</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Smith, Sean</creatorcontrib><creatorcontrib>Knoch, Joachim</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>König, Dirk</au><au>Frentzen, Michael</au><au>Wilck, Noël</au><au>Berghoff, Birger</au><au>Píš, Igor</au><au>Nappini, Silvia</au><au>Bondino, Federica</au><au>Müller, Merlin</au><au>Gonzalez, Sara</au><au>Di Santo, Giovanni</au><au>Petaccia, Luca</au><au>Mayer, Joachim</au><au>Smith, Sean</au><au>Knoch, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-05-05</date><risdate>2021</risdate><volume>13</volume><issue>17</issue><spage>20479</spage><epage>20488</epage><pages>20479-20488</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c22360</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5679-8205</orcidid><orcidid>https://orcid.org/0000-0002-7698-3539</orcidid><orcidid>https://orcid.org/0000-0002-4944-5487</orcidid><orcidid>https://orcid.org/0000-0001-8698-1468</orcidid><orcidid>https://orcid.org/0000-0001-5485-9142</orcidid><orcidid>https://orcid.org/0000-0001-6505-9319</orcidid><orcidid>https://orcid.org/0000-0001-9394-2563</orcidid><orcidid>https://orcid.org/0000-0002-5222-9291</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-05, Vol.13 (17), p.20479-20488
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2516222225
source ACS Publications
subjects Functional Nanostructured Materials (including low-D carbon)
title Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20Low-Nanoscale%20Intrinsic%20Silicon%20Highly%20Electron-Conductive%20by%20SiO2%20Coating&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ko%CC%88nig,%20Dirk&rft.date=2021-05-05&rft.volume=13&rft.issue=17&rft.spage=20479&rft.epage=20488&rft.pages=20479-20488&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c22360&rft_dat=%3Cproquest_acs_j%3E2516222225%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516222225&rft_id=info:pmid/&rfr_iscdi=true