Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating
Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-05, Vol.13 (17), p.20479-20488 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20488 |
---|---|
container_issue | 17 |
container_start_page | 20479 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | König, Dirk Frentzen, Michael Wilck, Noël Berghoff, Birger Píš, Igor Nappini, Silvia Bondino, Federica Müller, Merlin Gonzalez, Sara Di Santo, Giovanni Petaccia, Luca Mayer, Joachim Smith, Sean Knoch, Joachim |
description | Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials. |
doi_str_mv | 10.1021/acsami.0c22360 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2516222225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516222225</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-414b0a35cf2b93428c84a15f63e07a368bbfee4a4c4fb9d18ebfe275c19e77533</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtXzzmKsDWf-3GUpbaFxYLWc8im2ZqSJrrJKv33pmxxLjMDDy8zDwD3GM0wIvhJqiAPZoYUITRHF2CCK8ayknBy-T8zdg1uQtgjlFOC-AS8bYbeGbeDjf_NXqXzQUmr4crF3rhgFHw31ijv4NLsPu0Rzq1Wsfcuq73bDiqaHw3bY6LWBNZexhR1C646aYO-O_cp-HiZb-pl1qwXq_q5ySSuaMwYZi2SlKuOtBVlpFQlk5h3OdWokDQv27bTmkmmWNdWW1zqtJOCK1zpouCUTsHDmPvV--9BhygOJihtrXTaD0EQjnNyKp7QxxFNjsTep5fTYQIjcRInRnHiLI7-Ab4JYhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516222225</pqid></control><display><type>article</type><title>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</title><source>ACS Publications</source><creator>König, Dirk ; Frentzen, Michael ; Wilck, Noël ; Berghoff, Birger ; Píš, Igor ; Nappini, Silvia ; Bondino, Federica ; Müller, Merlin ; Gonzalez, Sara ; Di Santo, Giovanni ; Petaccia, Luca ; Mayer, Joachim ; Smith, Sean ; Knoch, Joachim</creator><creatorcontrib>König, Dirk ; Frentzen, Michael ; Wilck, Noël ; Berghoff, Birger ; Píš, Igor ; Nappini, Silvia ; Bondino, Federica ; Müller, Merlin ; Gonzalez, Sara ; Di Santo, Giovanni ; Petaccia, Luca ; Mayer, Joachim ; Smith, Sean ; Knoch, Joachim</creatorcontrib><description>Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c22360</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials & interfaces, 2021-05, Vol.13 (17), p.20479-20488</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5679-8205 ; 0000-0002-7698-3539 ; 0000-0002-4944-5487 ; 0000-0001-8698-1468 ; 0000-0001-5485-9142 ; 0000-0001-6505-9319 ; 0000-0001-9394-2563 ; 0000-0002-5222-9291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c22360$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c22360$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>König, Dirk</creatorcontrib><creatorcontrib>Frentzen, Michael</creatorcontrib><creatorcontrib>Wilck, Noël</creatorcontrib><creatorcontrib>Berghoff, Birger</creatorcontrib><creatorcontrib>Píš, Igor</creatorcontrib><creatorcontrib>Nappini, Silvia</creatorcontrib><creatorcontrib>Bondino, Federica</creatorcontrib><creatorcontrib>Müller, Merlin</creatorcontrib><creatorcontrib>Gonzalez, Sara</creatorcontrib><creatorcontrib>Di Santo, Giovanni</creatorcontrib><creatorcontrib>Petaccia, Luca</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Smith, Sean</creatorcontrib><creatorcontrib>Knoch, Joachim</creatorcontrib><title>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtXzzmKsDWf-3GUpbaFxYLWc8im2ZqSJrrJKv33pmxxLjMDDy8zDwD3GM0wIvhJqiAPZoYUITRHF2CCK8ayknBy-T8zdg1uQtgjlFOC-AS8bYbeGbeDjf_NXqXzQUmr4crF3rhgFHw31ijv4NLsPu0Rzq1Wsfcuq73bDiqaHw3bY6LWBNZexhR1C646aYO-O_cp-HiZb-pl1qwXq_q5ySSuaMwYZi2SlKuOtBVlpFQlk5h3OdWokDQv27bTmkmmWNdWW1zqtJOCK1zpouCUTsHDmPvV--9BhygOJihtrXTaD0EQjnNyKp7QxxFNjsTep5fTYQIjcRInRnHiLI7-Ab4JYhs</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>König, Dirk</creator><creator>Frentzen, Michael</creator><creator>Wilck, Noël</creator><creator>Berghoff, Birger</creator><creator>Píš, Igor</creator><creator>Nappini, Silvia</creator><creator>Bondino, Federica</creator><creator>Müller, Merlin</creator><creator>Gonzalez, Sara</creator><creator>Di Santo, Giovanni</creator><creator>Petaccia, Luca</creator><creator>Mayer, Joachim</creator><creator>Smith, Sean</creator><creator>Knoch, Joachim</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5679-8205</orcidid><orcidid>https://orcid.org/0000-0002-7698-3539</orcidid><orcidid>https://orcid.org/0000-0002-4944-5487</orcidid><orcidid>https://orcid.org/0000-0001-8698-1468</orcidid><orcidid>https://orcid.org/0000-0001-5485-9142</orcidid><orcidid>https://orcid.org/0000-0001-6505-9319</orcidid><orcidid>https://orcid.org/0000-0001-9394-2563</orcidid><orcidid>https://orcid.org/0000-0002-5222-9291</orcidid></search><sort><creationdate>20210505</creationdate><title>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</title><author>König, Dirk ; Frentzen, Michael ; Wilck, Noël ; Berghoff, Birger ; Píš, Igor ; Nappini, Silvia ; Bondino, Federica ; Müller, Merlin ; Gonzalez, Sara ; Di Santo, Giovanni ; Petaccia, Luca ; Mayer, Joachim ; Smith, Sean ; Knoch, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-414b0a35cf2b93428c84a15f63e07a368bbfee4a4c4fb9d18ebfe275c19e77533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>König, Dirk</creatorcontrib><creatorcontrib>Frentzen, Michael</creatorcontrib><creatorcontrib>Wilck, Noël</creatorcontrib><creatorcontrib>Berghoff, Birger</creatorcontrib><creatorcontrib>Píš, Igor</creatorcontrib><creatorcontrib>Nappini, Silvia</creatorcontrib><creatorcontrib>Bondino, Federica</creatorcontrib><creatorcontrib>Müller, Merlin</creatorcontrib><creatorcontrib>Gonzalez, Sara</creatorcontrib><creatorcontrib>Di Santo, Giovanni</creatorcontrib><creatorcontrib>Petaccia, Luca</creatorcontrib><creatorcontrib>Mayer, Joachim</creatorcontrib><creatorcontrib>Smith, Sean</creatorcontrib><creatorcontrib>Knoch, Joachim</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>König, Dirk</au><au>Frentzen, Michael</au><au>Wilck, Noël</au><au>Berghoff, Birger</au><au>Píš, Igor</au><au>Nappini, Silvia</au><au>Bondino, Federica</au><au>Müller, Merlin</au><au>Gonzalez, Sara</au><au>Di Santo, Giovanni</au><au>Petaccia, Luca</au><au>Mayer, Joachim</au><au>Smith, Sean</au><au>Knoch, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-05-05</date><risdate>2021</risdate><volume>13</volume><issue>17</issue><spage>20479</spage><epage>20488</epage><pages>20479-20488</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal–oxide–semiconductor-compatible materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.0c22360</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5679-8205</orcidid><orcidid>https://orcid.org/0000-0002-7698-3539</orcidid><orcidid>https://orcid.org/0000-0002-4944-5487</orcidid><orcidid>https://orcid.org/0000-0001-8698-1468</orcidid><orcidid>https://orcid.org/0000-0001-5485-9142</orcidid><orcidid>https://orcid.org/0000-0001-6505-9319</orcidid><orcidid>https://orcid.org/0000-0001-9394-2563</orcidid><orcidid>https://orcid.org/0000-0002-5222-9291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-05, Vol.13 (17), p.20479-20488 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2516222225 |
source | ACS Publications |
subjects | Functional Nanostructured Materials (including low-D carbon) |
title | Turning Low-Nanoscale Intrinsic Silicon Highly Electron-Conductive by SiO2 Coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turning%20Low-Nanoscale%20Intrinsic%20Silicon%20Highly%20Electron-Conductive%20by%20SiO2%20Coating&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ko%CC%88nig,%20Dirk&rft.date=2021-05-05&rft.volume=13&rft.issue=17&rft.spage=20479&rft.epage=20488&rft.pages=20479-20488&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c22360&rft_dat=%3Cproquest_acs_j%3E2516222225%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516222225&rft_id=info:pmid/&rfr_iscdi=true |