Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning
The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2021-06, Vol.5 (6), p.522-532 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 6 |
container_start_page | 522 |
container_title | Nature biomedical engineering |
container_volume | 5 |
creator | Qian, Xuejun Pei, Jing Zheng, Hui Xie, Xinxin Yan, Lin Zhang, Hao Han, Chunguang Gao, Xiang Zhang, Hanqi Zheng, Weiwei Sun, Qiang Lu, Lu Shung, K. Kirk |
description | The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows.
An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists. |
doi_str_mv | 10.1038/s41551-021-00711-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2515689434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542128118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-99be9afa33a31fa0206984efae88e7d548ead4bef4bff8fa63396a693c9067bf3</originalsourceid><addsrcrecordid>eNp9kctu1jAQhS0EolXpC7BAltiwCfiWxF6iikKlSrAAiZ01cca_XBwn2MlfdcejY0i5iAULy0fyN2c8cwh5ytlLzqR-VRRvW94wUQ_rOW_EA3IqeNs3WnWfH_6lT8h5KTeMMW6kMn37mJxIqftWK3ZKvn3Ic1nQreGIFErBUiZMK509HTJCWamD5DDTHMoX6vM80WmLa5jmEeIujwFvaRUZyrylkYYJDljoMQB1MaTgIMY7CssSqxwi0hFxoREhp5AOT8gjD7Hg-f19Rj5dvvl48a65fv_26uL1deOUUGtjzIAGPEgJkntggnVGK_SAWmM_tkojjGpArwbvtYdOStNBZ6QzrOsHL8_Ii913yfPXDctqp1AcxggJ561Y0fK200ZJVdHn_6A385ZT_V2llOBCc64rJXbK1Q2WjN4uuY6e7yxn9kdEdo_I1ojsz4isqEXP7q23YcLxd8mvQCogd6DUp3TA_Kf3f2y_A_Z_n3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542128118</pqid></control><display><type>article</type><title>Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qian, Xuejun ; Pei, Jing ; Zheng, Hui ; Xie, Xinxin ; Yan, Lin ; Zhang, Hao ; Han, Chunguang ; Gao, Xiang ; Zhang, Hanqi ; Zheng, Weiwei ; Sun, Qiang ; Lu, Lu ; Shung, K. Kirk</creator><creatorcontrib>Qian, Xuejun ; Pei, Jing ; Zheng, Hui ; Xie, Xinxin ; Yan, Lin ; Zhang, Hao ; Han, Chunguang ; Gao, Xiang ; Zhang, Hanqi ; Zheng, Weiwei ; Sun, Qiang ; Lu, Lu ; Shung, K. Kirk</creatorcontrib><description>The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows.
An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-021-00711-2</identifier><identifier>PMID: 33875840</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 639/166/985 ; 692/699/67/1347 ; 692/700/1421 ; Adult ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biopsy ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Confidence intervals ; Datasets as Topic ; Deep Learning ; False Positive Reactions ; Female ; Humans ; Image classification ; Image Interpretation, Computer-Assisted - statistics & numerical data ; Lesions ; Machine learning ; Malignancy ; Mammography ; Mammography - methods ; Mammography - standards ; Medical imaging ; Middle Aged ; Observer Variation ; Patients ; Predictive Value of Tests ; Prospective Studies ; Risk Assessment ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasonography - standards ; Ultrasound</subject><ispartof>Nature biomedical engineering, 2021-06, Vol.5 (6), p.522-532</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-99be9afa33a31fa0206984efae88e7d548ead4bef4bff8fa63396a693c9067bf3</citedby><cites>FETCH-LOGICAL-c424t-99be9afa33a31fa0206984efae88e7d548ead4bef4bff8fa63396a693c9067bf3</cites><orcidid>0000-0003-3634-8757 ; 0000-0001-5507-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-021-00711-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-021-00711-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33875840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Xuejun</creatorcontrib><creatorcontrib>Pei, Jing</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Xie, Xinxin</creatorcontrib><creatorcontrib>Yan, Lin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Han, Chunguang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Zhang, Hanqi</creatorcontrib><creatorcontrib>Zheng, Weiwei</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Shung, K. Kirk</creatorcontrib><title>Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows.
An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.</description><subject>631/114/1305</subject><subject>639/166/985</subject><subject>692/699/67/1347</subject><subject>692/700/1421</subject><subject>Adult</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biopsy</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Confidence intervals</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>False Positive Reactions</subject><subject>Female</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Interpretation, Computer-Assisted - statistics & numerical data</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Malignancy</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Mammography - standards</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Observer Variation</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Prospective Studies</subject><subject>Risk Assessment</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasonography - standards</subject><subject>Ultrasound</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctu1jAQhS0EolXpC7BAltiwCfiWxF6iikKlSrAAiZ01cca_XBwn2MlfdcejY0i5iAULy0fyN2c8cwh5ytlLzqR-VRRvW94wUQ_rOW_EA3IqeNs3WnWfH_6lT8h5KTeMMW6kMn37mJxIqftWK3ZKvn3Ic1nQreGIFErBUiZMK509HTJCWamD5DDTHMoX6vM80WmLa5jmEeIujwFvaRUZyrylkYYJDljoMQB1MaTgIMY7CssSqxwi0hFxoREhp5AOT8gjD7Hg-f19Rj5dvvl48a65fv_26uL1deOUUGtjzIAGPEgJkntggnVGK_SAWmM_tkojjGpArwbvtYdOStNBZ6QzrOsHL8_Ii913yfPXDctqp1AcxggJ561Y0fK200ZJVdHn_6A385ZT_V2llOBCc64rJXbK1Q2WjN4uuY6e7yxn9kdEdo_I1ojsz4isqEXP7q23YcLxd8mvQCogd6DUp3TA_Kf3f2y_A_Z_n3g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qian, Xuejun</creator><creator>Pei, Jing</creator><creator>Zheng, Hui</creator><creator>Xie, Xinxin</creator><creator>Yan, Lin</creator><creator>Zhang, Hao</creator><creator>Han, Chunguang</creator><creator>Gao, Xiang</creator><creator>Zhang, Hanqi</creator><creator>Zheng, Weiwei</creator><creator>Sun, Qiang</creator><creator>Lu, Lu</creator><creator>Shung, K. Kirk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3634-8757</orcidid><orcidid>https://orcid.org/0000-0001-5507-8989</orcidid></search><sort><creationdate>20210601</creationdate><title>Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning</title><author>Qian, Xuejun ; Pei, Jing ; Zheng, Hui ; Xie, Xinxin ; Yan, Lin ; Zhang, Hao ; Han, Chunguang ; Gao, Xiang ; Zhang, Hanqi ; Zheng, Weiwei ; Sun, Qiang ; Lu, Lu ; Shung, K. Kirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-99be9afa33a31fa0206984efae88e7d548ead4bef4bff8fa63396a693c9067bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/1305</topic><topic>639/166/985</topic><topic>692/699/67/1347</topic><topic>692/700/1421</topic><topic>Adult</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biopsy</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Confidence intervals</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>False Positive Reactions</topic><topic>Female</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Interpretation, Computer-Assisted - statistics & numerical data</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Malignancy</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Mammography - standards</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Observer Variation</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Prospective Studies</topic><topic>Risk Assessment</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasonography - standards</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Xuejun</creatorcontrib><creatorcontrib>Pei, Jing</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Xie, Xinxin</creatorcontrib><creatorcontrib>Yan, Lin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Han, Chunguang</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Zhang, Hanqi</creatorcontrib><creatorcontrib>Zheng, Weiwei</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Shung, K. Kirk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Xuejun</au><au>Pei, Jing</au><au>Zheng, Hui</au><au>Xie, Xinxin</au><au>Yan, Lin</au><au>Zhang, Hao</au><au>Han, Chunguang</au><au>Gao, Xiang</au><au>Zhang, Hanqi</au><au>Zheng, Weiwei</au><au>Sun, Qiang</au><au>Lu, Lu</au><au>Shung, K. Kirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>5</volume><issue>6</issue><spage>522</spage><epage>532</epage><pages>522-532</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows.
An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33875840</pmid><doi>10.1038/s41551-021-00711-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3634-8757</orcidid><orcidid>https://orcid.org/0000-0001-5507-8989</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2021-06, Vol.5 (6), p.522-532 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_proquest_miscellaneous_2515689434 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 631/114/1305 639/166/985 692/699/67/1347 692/700/1421 Adult Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biopsy Breast cancer Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Confidence intervals Datasets as Topic Deep Learning False Positive Reactions Female Humans Image classification Image Interpretation, Computer-Assisted - statistics & numerical data Lesions Machine learning Malignancy Mammography Mammography - methods Mammography - standards Medical imaging Middle Aged Observer Variation Patients Predictive Value of Tests Prospective Studies Risk Assessment Ultrasonic imaging Ultrasonography - methods Ultrasonography - standards Ultrasound |
title | Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospective%20assessment%20of%20breast%20cancer%20risk%20from%20multimodal%20multiview%20ultrasound%20images%20via%20clinically%20applicable%20deep%20learning&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Qian,%20Xuejun&rft.date=2021-06-01&rft.volume=5&rft.issue=6&rft.spage=522&rft.epage=532&rft.pages=522-532&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-021-00711-2&rft_dat=%3Cproquest_cross%3E2542128118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542128118&rft_id=info:pmid/33875840&rfr_iscdi=true |