Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting
Background: Nanocarriers-derived antitumor therapeutics are often associated with issues of limited tumor penetration and dissatisfactory antitumor efficacies. Some multistage delivery systems have been constructed to address these issues, but they are often accompanied with complicated manufacture...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2021-04, Vol.19 (1), p.111-111, Article 111 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 1 |
container_start_page | 111 |
container_title | Journal of nanobiotechnology |
container_volume | 19 |
creator | Hou, Xingyu Zhong, Dan Li, Yunkun Mao, Hongli Yang, Jun Zhang, Hu Luo, Kui Gong, Qiyong Gu, Zhongwei |
description | Background: Nanocarriers-derived antitumor therapeutics are often associated with issues of limited tumor penetration and dissatisfactory antitumor efficacies. Some multistage delivery systems have been constructed to address these issues, but they are often accompanied with complicated manufacture processes and undesirable biocompatibility, which hinder their further application in clinical practices. Herein, a novel dual-responsive multi-pocket nanoparticle was conveniently constructed through self-assembly and cross-linking of amphiphilic methoxypolyethylene glycol-lipoic acid (mPEG-LA) conjugates to enhance tumor penetration and antitumor efficacy.
Results: The multi-pocket nanoparticles (MPNs) had a relatively large size of similar to 170 nm at physiological pH which results in prolonged blood circulation and enhanced accumulation at the tumor site. But once extravasated into acidic tumor interstices, the increased solubility of PEG led to breakage of the supramolecular nanostructure and dissolution of MPNs to small-sized (< 20 nm) nanoparticles, promoting deep penetration and distribution in tumor tissues. Furthermore, MPNs exhibited not only an excellent stable nanostructure for antitumor doxorubicin (DOX) loading, but rapid dissociation of the nanostructure under an intracellular reductive environment. With the capacity of long blood circulation, deep tumor penetration and fast intracellular drug release, the DOX-loaded multi-pocket nanoparticles demonstrated superior antitumor activities against large 4T1 tumor (similar to 250 mm(3)) bearing mice with reduced side effect.
Conclusions: Our facile fabrication of multi-pocket nanoparticles provided a promising way in improving solid tumor penetration and achieving a great therapeutic efficacy. Graphic |
doi_str_mv | 10.1186/s12951-021-00854-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2515683791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661414319</galeid><doaj_id>oai_doaj_org_article_7f06cd85049d41e18671336d03cff660</doaj_id><sourcerecordid>A661414319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-d27f366f98226575237bc7f82a3fa01a9a4019b580040717a148c02ff9d8da9e3</originalsourceid><addsrcrecordid>eNqNkl1rFDEYhQdRbK3-AS9kwBtFpuY7MzeFslgtFAQ_rkM282abOpOMScbq3vnPze7W2hUvnDBkSJ5zhvdwquopRscYt-J1wqTjuEGkvKjlrFnfqw4xk7KhmPP7d74PqkcpXSFECCPsYXVAaStZx_hh9fNMGzdAbfUyOqOzC74Oth7nIbtmCuYL5NprHyYdszMDpPra5cs6ZZiuXYI6uTXUOWqf3FZrQ6ynGMaQnV_VPcBUT-ChENtr7fs6z2OBso4r2ECPqwdWDwme3OxH1eezN58W75qL92_PF6cXjeGdzE1PpKVC2K4lRHDJCZVLI21LNLUaYd1phnC35C1CDEksNWatQcTarm973QE9qs53vn3QV2qKbtTxhwraqe1BiCt1M6OSFgnTtxyxrmcYStYSUyp6RI21QqDidbLzmublCL0BXwYc9kz3b7y7VKvwTbWIM0ZFMXhxYxDD1xlSVqNLBoZBewhzUoRjLloqO1zQ53-hV2GOvkS1oZiQnLf0D7XSZQDnbSj_NRtTdSoEZphR3BXq-B9UWT2MzgQPtnRhX_ByT1CYDN_zSs8pqfOPH_ZZsmNNDClFsLd5YKQ2hVW7wqpSWLUtrFoX0bO7Sd5Kfje0AK92wDUsg03GgTdwiyGEBMOEM7R5NmG1_08vXN62chFmn-kvdkMHDw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514675583</pqid></control><display><type>article</type><title>Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting</title><source>Springer Online Journals Complete</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hou, Xingyu ; Zhong, Dan ; Li, Yunkun ; Mao, Hongli ; Yang, Jun ; Zhang, Hu ; Luo, Kui ; Gong, Qiyong ; Gu, Zhongwei</creator><creatorcontrib>Hou, Xingyu ; Zhong, Dan ; Li, Yunkun ; Mao, Hongli ; Yang, Jun ; Zhang, Hu ; Luo, Kui ; Gong, Qiyong ; Gu, Zhongwei</creatorcontrib><description>Background: Nanocarriers-derived antitumor therapeutics are often associated with issues of limited tumor penetration and dissatisfactory antitumor efficacies. Some multistage delivery systems have been constructed to address these issues, but they are often accompanied with complicated manufacture processes and undesirable biocompatibility, which hinder their further application in clinical practices. Herein, a novel dual-responsive multi-pocket nanoparticle was conveniently constructed through self-assembly and cross-linking of amphiphilic methoxypolyethylene glycol-lipoic acid (mPEG-LA) conjugates to enhance tumor penetration and antitumor efficacy.
Results: The multi-pocket nanoparticles (MPNs) had a relatively large size of similar to 170 nm at physiological pH which results in prolonged blood circulation and enhanced accumulation at the tumor site. But once extravasated into acidic tumor interstices, the increased solubility of PEG led to breakage of the supramolecular nanostructure and dissolution of MPNs to small-sized (< 20 nm) nanoparticles, promoting deep penetration and distribution in tumor tissues. Furthermore, MPNs exhibited not only an excellent stable nanostructure for antitumor doxorubicin (DOX) loading, but rapid dissociation of the nanostructure under an intracellular reductive environment. With the capacity of long blood circulation, deep tumor penetration and fast intracellular drug release, the DOX-loaded multi-pocket nanoparticles demonstrated superior antitumor activities against large 4T1 tumor (similar to 250 mm(3)) bearing mice with reduced side effect.
Conclusions: Our facile fabrication of multi-pocket nanoparticles provided a promising way in improving solid tumor penetration and achieving a great therapeutic efficacy. Graphic</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-021-00854-z</identifier><identifier>PMID: 33874945</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Acids ; Anticancer properties ; Antitumor activity ; Biocompatibility ; Biotechnology & Applied Microbiology ; Blood circulation ; Cancer ; Care and treatment ; Crosslinking ; Disulfide cross-linking ; Doxorubicin ; Drug delivery ; Drug delivery systems ; Fabrication ; Facile preparation ; FDA approval ; Health aspects ; Interstices ; Intracellular ; Life Sciences & Biomedicine ; Lipoic acid ; Molecular weight ; Nanoparticles ; Nanoscience & Nanotechnology ; Nanostructure ; Particle size ; Penetration ; Physiology ; Polyethylene glycol ; Science & Technology ; Science & Technology - Other Topics ; Self-assembly ; Side effects ; Solid tumors ; Tumor penetration ; Tumors</subject><ispartof>Journal of nanobiotechnology, 2021-04, Vol.19 (1), p.111-111, Article 111</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000641254000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c597t-d27f366f98226575237bc7f82a3fa01a9a4019b580040717a148c02ff9d8da9e3</citedby><cites>FETCH-LOGICAL-c597t-d27f366f98226575237bc7f82a3fa01a9a4019b580040717a148c02ff9d8da9e3</cites><orcidid>0000-0002-5912-4871 ; 0000-0003-0525-1290 ; 0000-0003-4178-6401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33874945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Xingyu</creatorcontrib><creatorcontrib>Zhong, Dan</creatorcontrib><creatorcontrib>Li, Yunkun</creatorcontrib><creatorcontrib>Mao, Hongli</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Zhang, Hu</creatorcontrib><creatorcontrib>Luo, Kui</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Gu, Zhongwei</creatorcontrib><title>Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting</title><title>Journal of nanobiotechnology</title><addtitle>J NANOBIOTECHNOL</addtitle><addtitle>J Nanobiotechnology</addtitle><description>Background: Nanocarriers-derived antitumor therapeutics are often associated with issues of limited tumor penetration and dissatisfactory antitumor efficacies. Some multistage delivery systems have been constructed to address these issues, but they are often accompanied with complicated manufacture processes and undesirable biocompatibility, which hinder their further application in clinical practices. Herein, a novel dual-responsive multi-pocket nanoparticle was conveniently constructed through self-assembly and cross-linking of amphiphilic methoxypolyethylene glycol-lipoic acid (mPEG-LA) conjugates to enhance tumor penetration and antitumor efficacy.
Results: The multi-pocket nanoparticles (MPNs) had a relatively large size of similar to 170 nm at physiological pH which results in prolonged blood circulation and enhanced accumulation at the tumor site. But once extravasated into acidic tumor interstices, the increased solubility of PEG led to breakage of the supramolecular nanostructure and dissolution of MPNs to small-sized (< 20 nm) nanoparticles, promoting deep penetration and distribution in tumor tissues. Furthermore, MPNs exhibited not only an excellent stable nanostructure for antitumor doxorubicin (DOX) loading, but rapid dissociation of the nanostructure under an intracellular reductive environment. With the capacity of long blood circulation, deep tumor penetration and fast intracellular drug release, the DOX-loaded multi-pocket nanoparticles demonstrated superior antitumor activities against large 4T1 tumor (similar to 250 mm(3)) bearing mice with reduced side effect.
Conclusions: Our facile fabrication of multi-pocket nanoparticles provided a promising way in improving solid tumor penetration and achieving a great therapeutic efficacy. Graphic</description><subject>Acids</subject><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Biocompatibility</subject><subject>Biotechnology & Applied Microbiology</subject><subject>Blood circulation</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Crosslinking</subject><subject>Disulfide cross-linking</subject><subject>Doxorubicin</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Fabrication</subject><subject>Facile preparation</subject><subject>FDA approval</subject><subject>Health aspects</subject><subject>Interstices</subject><subject>Intracellular</subject><subject>Life Sciences & Biomedicine</subject><subject>Lipoic acid</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanostructure</subject><subject>Particle size</subject><subject>Penetration</subject><subject>Physiology</subject><subject>Polyethylene glycol</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Self-assembly</subject><subject>Side effects</subject><subject>Solid tumors</subject><subject>Tumor penetration</subject><subject>Tumors</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEYhQdRbK3-AS9kwBtFpuY7MzeFslgtFAQ_rkM282abOpOMScbq3vnPze7W2hUvnDBkSJ5zhvdwquopRscYt-J1wqTjuEGkvKjlrFnfqw4xk7KhmPP7d74PqkcpXSFECCPsYXVAaStZx_hh9fNMGzdAbfUyOqOzC74Oth7nIbtmCuYL5NprHyYdszMDpPra5cs6ZZiuXYI6uTXUOWqf3FZrQ6ynGMaQnV_VPcBUT-ChENtr7fs6z2OBso4r2ECPqwdWDwme3OxH1eezN58W75qL92_PF6cXjeGdzE1PpKVC2K4lRHDJCZVLI21LNLUaYd1phnC35C1CDEksNWatQcTarm973QE9qs53vn3QV2qKbtTxhwraqe1BiCt1M6OSFgnTtxyxrmcYStYSUyp6RI21QqDidbLzmublCL0BXwYc9kz3b7y7VKvwTbWIM0ZFMXhxYxDD1xlSVqNLBoZBewhzUoRjLloqO1zQ53-hV2GOvkS1oZiQnLf0D7XSZQDnbSj_NRtTdSoEZphR3BXq-B9UWT2MzgQPtnRhX_ByT1CYDN_zSs8pqfOPH_ZZsmNNDClFsLd5YKQ2hVW7wqpSWLUtrFoX0bO7Sd5Kfje0AK92wDUsg03GgTdwiyGEBMOEM7R5NmG1_08vXN62chFmn-kvdkMHDw</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Hou, Xingyu</creator><creator>Zhong, Dan</creator><creator>Li, Yunkun</creator><creator>Mao, Hongli</creator><creator>Yang, Jun</creator><creator>Zhang, Hu</creator><creator>Luo, Kui</creator><creator>Gong, Qiyong</creator><creator>Gu, Zhongwei</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5912-4871</orcidid><orcidid>https://orcid.org/0000-0003-0525-1290</orcidid><orcidid>https://orcid.org/0000-0003-4178-6401</orcidid></search><sort><creationdate>20210419</creationdate><title>Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting</title><author>Hou, Xingyu ; Zhong, Dan ; Li, Yunkun ; Mao, Hongli ; Yang, Jun ; Zhang, Hu ; Luo, Kui ; Gong, Qiyong ; Gu, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-d27f366f98226575237bc7f82a3fa01a9a4019b580040717a148c02ff9d8da9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Biocompatibility</topic><topic>Biotechnology & Applied Microbiology</topic><topic>Blood circulation</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Crosslinking</topic><topic>Disulfide cross-linking</topic><topic>Doxorubicin</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Fabrication</topic><topic>Facile preparation</topic><topic>FDA approval</topic><topic>Health aspects</topic><topic>Interstices</topic><topic>Intracellular</topic><topic>Life Sciences & Biomedicine</topic><topic>Lipoic acid</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanostructure</topic><topic>Particle size</topic><topic>Penetration</topic><topic>Physiology</topic><topic>Polyethylene glycol</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Self-assembly</topic><topic>Side effects</topic><topic>Solid tumors</topic><topic>Tumor penetration</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Xingyu</creatorcontrib><creatorcontrib>Zhong, Dan</creatorcontrib><creatorcontrib>Li, Yunkun</creatorcontrib><creatorcontrib>Mao, Hongli</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Zhang, Hu</creatorcontrib><creatorcontrib>Luo, Kui</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Gu, Zhongwei</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Xingyu</au><au>Zhong, Dan</au><au>Li, Yunkun</au><au>Mao, Hongli</au><au>Yang, Jun</au><au>Zhang, Hu</au><au>Luo, Kui</au><au>Gong, Qiyong</au><au>Gu, Zhongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting</atitle><jtitle>Journal of nanobiotechnology</jtitle><stitle>J NANOBIOTECHNOL</stitle><addtitle>J Nanobiotechnology</addtitle><date>2021-04-19</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>111</spage><epage>111</epage><pages>111-111</pages><artnum>111</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>Background: Nanocarriers-derived antitumor therapeutics are often associated with issues of limited tumor penetration and dissatisfactory antitumor efficacies. Some multistage delivery systems have been constructed to address these issues, but they are often accompanied with complicated manufacture processes and undesirable biocompatibility, which hinder their further application in clinical practices. Herein, a novel dual-responsive multi-pocket nanoparticle was conveniently constructed through self-assembly and cross-linking of amphiphilic methoxypolyethylene glycol-lipoic acid (mPEG-LA) conjugates to enhance tumor penetration and antitumor efficacy.
Results: The multi-pocket nanoparticles (MPNs) had a relatively large size of similar to 170 nm at physiological pH which results in prolonged blood circulation and enhanced accumulation at the tumor site. But once extravasated into acidic tumor interstices, the increased solubility of PEG led to breakage of the supramolecular nanostructure and dissolution of MPNs to small-sized (< 20 nm) nanoparticles, promoting deep penetration and distribution in tumor tissues. Furthermore, MPNs exhibited not only an excellent stable nanostructure for antitumor doxorubicin (DOX) loading, but rapid dissociation of the nanostructure under an intracellular reductive environment. With the capacity of long blood circulation, deep tumor penetration and fast intracellular drug release, the DOX-loaded multi-pocket nanoparticles demonstrated superior antitumor activities against large 4T1 tumor (similar to 250 mm(3)) bearing mice with reduced side effect.
Conclusions: Our facile fabrication of multi-pocket nanoparticles provided a promising way in improving solid tumor penetration and achieving a great therapeutic efficacy. Graphic</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>33874945</pmid><doi>10.1186/s12951-021-00854-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5912-4871</orcidid><orcidid>https://orcid.org/0000-0003-0525-1290</orcidid><orcidid>https://orcid.org/0000-0003-4178-6401</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-3155 |
ispartof | Journal of nanobiotechnology, 2021-04, Vol.19 (1), p.111-111, Article 111 |
issn | 1477-3155 1477-3155 |
language | eng |
recordid | cdi_proquest_miscellaneous_2515683791 |
source | Springer Online Journals Complete; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | Acids Anticancer properties Antitumor activity Biocompatibility Biotechnology & Applied Microbiology Blood circulation Cancer Care and treatment Crosslinking Disulfide cross-linking Doxorubicin Drug delivery Drug delivery systems Fabrication Facile preparation FDA approval Health aspects Interstices Intracellular Life Sciences & Biomedicine Lipoic acid Molecular weight Nanoparticles Nanoscience & Nanotechnology Nanostructure Particle size Penetration Physiology Polyethylene glycol Science & Technology Science & Technology - Other Topics Self-assembly Side effects Solid tumors Tumor penetration Tumors |
title | Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20fabrication%20of%20multi-pocket%20nanoparticles%20with%20stepwise%20size%20transition%20for%20promoting%20deep%20penetration%20and%20tumor%20targeting&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Hou,%20Xingyu&rft.date=2021-04-19&rft.volume=19&rft.issue=1&rft.spage=111&rft.epage=111&rft.pages=111-111&rft.artnum=111&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-021-00854-z&rft_dat=%3Cgale_proqu%3EA661414319%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514675583&rft_id=info:pmid/33874945&rft_galeid=A661414319&rft_doaj_id=oai_doaj_org_article_7f06cd85049d41e18671336d03cff660&rfr_iscdi=true |