Multi-scale design of the chela of the hermit crab Coenobita brevimanus
The chela of the hermit crab protects its body against the attack from predators. Yet, a deep understanding of this mechanical defense is still lacking. Here, we investigate the chela of hermit crab, Coenobita brevimanus, and establish the relationships between the microstructures, chemical composit...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-06, Vol.127, p.229-241 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | |
container_start_page | 229 |
container_title | Acta biomaterialia |
container_volume | 127 |
creator | Lin, Weiqin Liu, Pan Li, Shan Tian, Jie Cai, Wenran Zhang, Xiao Peng, Jinlan Miao, Chunguang Zhang, Hong Gu, Ping Wang, Zhengzhi Zhang, Zuoqi Luo, Tianzhi |
description | The chela of the hermit crab protects its body against the attack from predators. Yet, a deep understanding of this mechanical defense is still lacking. Here, we investigate the chela of hermit crab, Coenobita brevimanus, and establish the relationships between the microstructures, chemical compositions and mechanical properties to gain insights into its biomechanical functions. We find that the chela is a multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, an increase of the calcium carbonate content towards the layer furthest from the exterior, unlike the chemical gradients of many crustacean exoskeletons, provides a strong resistance to deformation. Nanoindentation measurements reveal that the overall gradient of the elastic modulus and hardness in the cross-section displays a sandwich profile, i.e., a soft core clamped by two stiff surface layers. Further mechanics modeling demonstrates that the high curvature and stiff innermost sublayer enhance the structural rigidity of the chela. In conjunction with the experimental observations, dynamic finite element analysis maps the time-spatial distribution of principal stress and indicates that fiber bridging might be the major mechanism against crack propagation at microscale. The lessons gained from the study of this multiphase biological composite could provide important insights into the design and fabrication of bioinspired materials for structural applications.
Multiple hierarchical structures have been discovered in a variety of exoskeletons. They are naturally designed to maintain the structural integrity and act as a protective layer for the animals. However, each kind of the hierarchical structures has its unique topology, chemical gradients as well as mechanical properties. We find that the chela is multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, a large amount of helicoidal organic fibrils form highly organized 3D woven matrix in the innermost layer, providing a strong mechanical resistance to avoid catastrophic failure. The overall gradient of the elastic modulus and hardness in the cross-section display a sandwich profile, effectively minimizing the stress concentration and deformation. The lessons gained from the multiscale design st |
doi_str_mv | 10.1016/j.actbio.2021.04.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2515064962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S174270612100249X</els_id><sourcerecordid>2515064962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-53c1631070ed277997aa51a514aca55721f5bd4b0ef78e3f9dcf3efabe4c882b3</originalsourceid><addsrcrecordid>eNp9kEtr3DAURkVoSCaPf1CKoZts7OgteVMoQ16QkE2yFpJ83dHgsaaSHci_j4KTLroICKQL57v36iD0neCGYCIvt431kwuxoZiSBvMGE3qAVkQrXSsh9bfyVpzWCktyjE5y3mLMNKH6CB0zpqXETK3QzcM8TKHO3g5QdZDDn7GKfTVtoPIbGOxnsYG0C1Plk3XVOsIYXZhs5RK8hJ0d53yGDns7ZDj_uE_R8_XV0_q2vn-8uVv_vq89a_FUC-aJZAQrDB1Vqm2VtYKUw623QihKeuE67jD0SgPr2873DHrrgHutqWOn6GLpu0_x7wx5MruQPQyDHSHO2VBBBJa8lbSgP_9Dt3FOY9muUFzLlgnGCsUXyqeYc4Le7FP5Uno1BJt30WZrFtHmXbTB3BTRJfbjo_nsdtD9C32aLcCvBYBi4yVAMtkHGD10IYGfTBfD1xPeAIkBj10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548693533</pqid></control><display><type>article</type><title>Multi-scale design of the chela of the hermit crab Coenobita brevimanus</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, Weiqin ; Liu, Pan ; Li, Shan ; Tian, Jie ; Cai, Wenran ; Zhang, Xiao ; Peng, Jinlan ; Miao, Chunguang ; Zhang, Hong ; Gu, Ping ; Wang, Zhengzhi ; Zhang, Zuoqi ; Luo, Tianzhi</creator><creatorcontrib>Lin, Weiqin ; Liu, Pan ; Li, Shan ; Tian, Jie ; Cai, Wenran ; Zhang, Xiao ; Peng, Jinlan ; Miao, Chunguang ; Zhang, Hong ; Gu, Ping ; Wang, Zhengzhi ; Zhang, Zuoqi ; Luo, Tianzhi</creatorcontrib><description>The chela of the hermit crab protects its body against the attack from predators. Yet, a deep understanding of this mechanical defense is still lacking. Here, we investigate the chela of hermit crab, Coenobita brevimanus, and establish the relationships between the microstructures, chemical compositions and mechanical properties to gain insights into its biomechanical functions. We find that the chela is a multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, an increase of the calcium carbonate content towards the layer furthest from the exterior, unlike the chemical gradients of many crustacean exoskeletons, provides a strong resistance to deformation. Nanoindentation measurements reveal that the overall gradient of the elastic modulus and hardness in the cross-section displays a sandwich profile, i.e., a soft core clamped by two stiff surface layers. Further mechanics modeling demonstrates that the high curvature and stiff innermost sublayer enhance the structural rigidity of the chela. In conjunction with the experimental observations, dynamic finite element analysis maps the time-spatial distribution of principal stress and indicates that fiber bridging might be the major mechanism against crack propagation at microscale. The lessons gained from the study of this multiphase biological composite could provide important insights into the design and fabrication of bioinspired materials for structural applications.
Multiple hierarchical structures have been discovered in a variety of exoskeletons. They are naturally designed to maintain the structural integrity and act as a protective layer for the animals. However, each kind of the hierarchical structures has its unique topology, chemical gradients as well as mechanical properties. We find that the chela is multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, a large amount of helicoidal organic fibrils form highly organized 3D woven matrix in the innermost layer, providing a strong mechanical resistance to avoid catastrophic failure. The overall gradient of the elastic modulus and hardness in the cross-section display a sandwich profile, effectively minimizing the stress concentration and deformation. The lessons gained from the multiscale design strategy of the chela provide important insights into the design and fabrication of bioinspired materials.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.04.012</identifier><identifier>PMID: 33866037</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biomechanics ; Biomimetics ; Calcium carbonate ; Chemical composition ; Chemical gradient ; Coenobita brevimanus ; Crabs ; Crack propagation ; Crustaceans ; Deformation resistance ; Elastic deformation ; Exoskeleton ; Exoskeletons ; Fabrication ; Finite element method ; Hierarchical structure ; Laminate ; Mathematical analysis ; Mechanical properties ; Modulus of elasticity ; Multilayers ; Nanoindentation ; Predators ; Rigidity ; Spatial distribution ; Stress concentration ; Surface layers</subject><ispartof>Acta biomaterialia, 2021-06, Vol.127, p.229-241</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-53c1631070ed277997aa51a514aca55721f5bd4b0ef78e3f9dcf3efabe4c882b3</citedby><cites>FETCH-LOGICAL-c390t-53c1631070ed277997aa51a514aca55721f5bd4b0ef78e3f9dcf3efabe4c882b3</cites><orcidid>0000-0003-2688-8960 ; 0000-0003-2637-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S174270612100249X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33866037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Weiqin</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Cai, Wenran</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Peng, Jinlan</creatorcontrib><creatorcontrib>Miao, Chunguang</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Gu, Ping</creatorcontrib><creatorcontrib>Wang, Zhengzhi</creatorcontrib><creatorcontrib>Zhang, Zuoqi</creatorcontrib><creatorcontrib>Luo, Tianzhi</creatorcontrib><title>Multi-scale design of the chela of the hermit crab Coenobita brevimanus</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The chela of the hermit crab protects its body against the attack from predators. Yet, a deep understanding of this mechanical defense is still lacking. Here, we investigate the chela of hermit crab, Coenobita brevimanus, and establish the relationships between the microstructures, chemical compositions and mechanical properties to gain insights into its biomechanical functions. We find that the chela is a multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, an increase of the calcium carbonate content towards the layer furthest from the exterior, unlike the chemical gradients of many crustacean exoskeletons, provides a strong resistance to deformation. Nanoindentation measurements reveal that the overall gradient of the elastic modulus and hardness in the cross-section displays a sandwich profile, i.e., a soft core clamped by two stiff surface layers. Further mechanics modeling demonstrates that the high curvature and stiff innermost sublayer enhance the structural rigidity of the chela. In conjunction with the experimental observations, dynamic finite element analysis maps the time-spatial distribution of principal stress and indicates that fiber bridging might be the major mechanism against crack propagation at microscale. The lessons gained from the study of this multiphase biological composite could provide important insights into the design and fabrication of bioinspired materials for structural applications.
Multiple hierarchical structures have been discovered in a variety of exoskeletons. They are naturally designed to maintain the structural integrity and act as a protective layer for the animals. However, each kind of the hierarchical structures has its unique topology, chemical gradients as well as mechanical properties. We find that the chela is multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, a large amount of helicoidal organic fibrils form highly organized 3D woven matrix in the innermost layer, providing a strong mechanical resistance to avoid catastrophic failure. The overall gradient of the elastic modulus and hardness in the cross-section display a sandwich profile, effectively minimizing the stress concentration and deformation. The lessons gained from the multiscale design strategy of the chela provide important insights into the design and fabrication of bioinspired materials.
[Display omitted]</description><subject>Biomechanics</subject><subject>Biomimetics</subject><subject>Calcium carbonate</subject><subject>Chemical composition</subject><subject>Chemical gradient</subject><subject>Coenobita brevimanus</subject><subject>Crabs</subject><subject>Crack propagation</subject><subject>Crustaceans</subject><subject>Deformation resistance</subject><subject>Elastic deformation</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Fabrication</subject><subject>Finite element method</subject><subject>Hierarchical structure</subject><subject>Laminate</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Multilayers</subject><subject>Nanoindentation</subject><subject>Predators</subject><subject>Rigidity</subject><subject>Spatial distribution</subject><subject>Stress concentration</subject><subject>Surface layers</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAURkVoSCaPf1CKoZts7OgteVMoQ16QkE2yFpJ83dHgsaaSHci_j4KTLroICKQL57v36iD0neCGYCIvt431kwuxoZiSBvMGE3qAVkQrXSsh9bfyVpzWCktyjE5y3mLMNKH6CB0zpqXETK3QzcM8TKHO3g5QdZDDn7GKfTVtoPIbGOxnsYG0C1Plk3XVOsIYXZhs5RK8hJ0d53yGDns7ZDj_uE_R8_XV0_q2vn-8uVv_vq89a_FUC-aJZAQrDB1Vqm2VtYKUw623QihKeuE67jD0SgPr2873DHrrgHutqWOn6GLpu0_x7wx5MruQPQyDHSHO2VBBBJa8lbSgP_9Dt3FOY9muUFzLlgnGCsUXyqeYc4Le7FP5Uno1BJt30WZrFtHmXbTB3BTRJfbjo_nsdtD9C32aLcCvBYBi4yVAMtkHGD10IYGfTBfD1xPeAIkBj10</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lin, Weiqin</creator><creator>Liu, Pan</creator><creator>Li, Shan</creator><creator>Tian, Jie</creator><creator>Cai, Wenran</creator><creator>Zhang, Xiao</creator><creator>Peng, Jinlan</creator><creator>Miao, Chunguang</creator><creator>Zhang, Hong</creator><creator>Gu, Ping</creator><creator>Wang, Zhengzhi</creator><creator>Zhang, Zuoqi</creator><creator>Luo, Tianzhi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2688-8960</orcidid><orcidid>https://orcid.org/0000-0003-2637-9605</orcidid></search><sort><creationdate>20210601</creationdate><title>Multi-scale design of the chela of the hermit crab Coenobita brevimanus</title><author>Lin, Weiqin ; Liu, Pan ; Li, Shan ; Tian, Jie ; Cai, Wenran ; Zhang, Xiao ; Peng, Jinlan ; Miao, Chunguang ; Zhang, Hong ; Gu, Ping ; Wang, Zhengzhi ; Zhang, Zuoqi ; Luo, Tianzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-53c1631070ed277997aa51a514aca55721f5bd4b0ef78e3f9dcf3efabe4c882b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomechanics</topic><topic>Biomimetics</topic><topic>Calcium carbonate</topic><topic>Chemical composition</topic><topic>Chemical gradient</topic><topic>Coenobita brevimanus</topic><topic>Crabs</topic><topic>Crack propagation</topic><topic>Crustaceans</topic><topic>Deformation resistance</topic><topic>Elastic deformation</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Fabrication</topic><topic>Finite element method</topic><topic>Hierarchical structure</topic><topic>Laminate</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Multilayers</topic><topic>Nanoindentation</topic><topic>Predators</topic><topic>Rigidity</topic><topic>Spatial distribution</topic><topic>Stress concentration</topic><topic>Surface layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Weiqin</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Cai, Wenran</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Peng, Jinlan</creatorcontrib><creatorcontrib>Miao, Chunguang</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Gu, Ping</creatorcontrib><creatorcontrib>Wang, Zhengzhi</creatorcontrib><creatorcontrib>Zhang, Zuoqi</creatorcontrib><creatorcontrib>Luo, Tianzhi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Weiqin</au><au>Liu, Pan</au><au>Li, Shan</au><au>Tian, Jie</au><au>Cai, Wenran</au><au>Zhang, Xiao</au><au>Peng, Jinlan</au><au>Miao, Chunguang</au><au>Zhang, Hong</au><au>Gu, Ping</au><au>Wang, Zhengzhi</au><au>Zhang, Zuoqi</au><au>Luo, Tianzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale design of the chela of the hermit crab Coenobita brevimanus</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>127</volume><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The chela of the hermit crab protects its body against the attack from predators. Yet, a deep understanding of this mechanical defense is still lacking. Here, we investigate the chela of hermit crab, Coenobita brevimanus, and establish the relationships between the microstructures, chemical compositions and mechanical properties to gain insights into its biomechanical functions. We find that the chela is a multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, an increase of the calcium carbonate content towards the layer furthest from the exterior, unlike the chemical gradients of many crustacean exoskeletons, provides a strong resistance to deformation. Nanoindentation measurements reveal that the overall gradient of the elastic modulus and hardness in the cross-section displays a sandwich profile, i.e., a soft core clamped by two stiff surface layers. Further mechanics modeling demonstrates that the high curvature and stiff innermost sublayer enhance the structural rigidity of the chela. In conjunction with the experimental observations, dynamic finite element analysis maps the time-spatial distribution of principal stress and indicates that fiber bridging might be the major mechanism against crack propagation at microscale. The lessons gained from the study of this multiphase biological composite could provide important insights into the design and fabrication of bioinspired materials for structural applications.
Multiple hierarchical structures have been discovered in a variety of exoskeletons. They are naturally designed to maintain the structural integrity and act as a protective layer for the animals. However, each kind of the hierarchical structures has its unique topology, chemical gradients as well as mechanical properties. We find that the chela is multi-layered shell composed of five different layers with distinct features of the microstructures and chemical compositions, conferring different mechanical properties. Especially, a large amount of helicoidal organic fibrils form highly organized 3D woven matrix in the innermost layer, providing a strong mechanical resistance to avoid catastrophic failure. The overall gradient of the elastic modulus and hardness in the cross-section display a sandwich profile, effectively minimizing the stress concentration and deformation. The lessons gained from the multiscale design strategy of the chela provide important insights into the design and fabrication of bioinspired materials.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33866037</pmid><doi>10.1016/j.actbio.2021.04.012</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2688-8960</orcidid><orcidid>https://orcid.org/0000-0003-2637-9605</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-06, Vol.127, p.229-241 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2515064962 |
source | Elsevier ScienceDirect Journals |
subjects | Biomechanics Biomimetics Calcium carbonate Chemical composition Chemical gradient Coenobita brevimanus Crabs Crack propagation Crustaceans Deformation resistance Elastic deformation Exoskeleton Exoskeletons Fabrication Finite element method Hierarchical structure Laminate Mathematical analysis Mechanical properties Modulus of elasticity Multilayers Nanoindentation Predators Rigidity Spatial distribution Stress concentration Surface layers |
title | Multi-scale design of the chela of the hermit crab Coenobita brevimanus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20design%20of%20the%20chela%20of%20the%20hermit%20crab%20Coenobita%20brevimanus&rft.jtitle=Acta%20biomaterialia&rft.au=Lin,%20Weiqin&rft.date=2021-06-01&rft.volume=127&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.04.012&rft_dat=%3Cproquest_cross%3E2515064962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548693533&rft_id=info:pmid/33866037&rft_els_id=S174270612100249X&rfr_iscdi=true |