Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prostheses

[Display omitted] •FRC contained epoxy resin matrix with 30% inorganic compound and 45% glass fiber.•Continuous regular glass fibers were parallelly distributed in a bidirectional way.•FRC FDPs showed high reliability for a masticatory load in the posterior region.•Extended FRC framework resulted in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2021-08, Vol.37 (8), p.e443-e453
Hauptverfasser: Bergamo, Edmara T.P., Bastos, Tiago M.C., Lopes, Adolfo C.O., de Araujo Júnior, Everardo N.S., Coelho, Paulo G., Benalcazar Jalkh, Ernesto B., Zahoui, Abbas, Bonfante, Estevam A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e453
container_issue 8
container_start_page e443
container_title Dental materials
container_volume 37
creator Bergamo, Edmara T.P.
Bastos, Tiago M.C.
Lopes, Adolfo C.O.
de Araujo Júnior, Everardo N.S.
Coelho, Paulo G.
Benalcazar Jalkh, Ernesto B.
Zahoui, Abbas
Bonfante, Estevam A.
description [Display omitted] •FRC contained epoxy resin matrix with 30% inorganic compound and 45% glass fiber.•Continuous regular glass fibers were parallelly distributed in a bidirectional way.•FRC FDPs showed high reliability for a masticatory load in the posterior region.•Extended FRC framework resulted in higher reliability than conventional framework.•Veneering composite cohesive or adhesive fractures were the chief failure modes. To characterize the physicochemical and mechanical properties of a milled fiber-reinforced composite (FRC) for implant-supported fixed dental prostheses (FDPs). For FRC characterization, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier-transformed infrared spectrometry, simultaneous thermogravimetric analysis and differential scanning calorimetry were performed. For fatigue testing, 3-unit FRC frameworks were fabricated with conventional (9 mm2 connector area) and modified designs (12 mm2 connector area and 2.5 mm-height lingual extension). A hybrid resin composite was veneered onto the frameworks. FDPs were subjected to step-stress accelerated-life fatigue testing until fracture or suspension. Use level probability Weibull curves at 300 N were plotted and the reliability for 100,000 cycles at 300, 600 and 800 N was calculated. Fractographic analysis was performed by stereomicroscope and SEM. The FRC consisted of an epoxy resin (∼25%) matrix reinforced with inorganic particles and glass fibers (∼75%). Multi-layer continuous regular-geometry fibers were densely arranged in a parallel and bidirectional fashion in the resin matrix. Fatigue analysis demonstrated high probability of survival (99%) for FDPs at 300 N, irrespective of framework design. Conventional FDPs showed a progressive decrease in the reliability at 600 (84%) and 800 N (19%), whereas modified FDPs reliability significantly reduced only at 800 N (75%). The chief failure modes for FRC FDPs were cohesive fracture of the veneering composite on lower loads and adhesive fracture of the veneering composite at higher loads. Milled epoxy resin matrix reinforced with glass fibers composite resulted in high probability of survival in the implant-supported prosthesis scenario.
doi_str_mv 10.1016/j.dental.2021.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2515064851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564121001172</els_id><sourcerecordid>2515064851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d963433d95ddeef8e1235eeb5c7646c75f252399c1fea0127e4281eaf00f85ac3</originalsourceid><addsrcrecordid>eNp9kM1u1DAURi0EotOfN0AoSzZJr-04iTeVUFVopUqwgLXlsa81HpI42A5VWfLkeJi2S1b2lc7n7_oQ8o5CQ4F2l_vG4pz12DBgtAHeAG1fkQ0delkDyP412QAFWYuupSfkNKU9ALRM0rfkhPOhEx2VG_Ln6-4xeRPMDidv9Fjp2VYTmp2e_43lErXJGP1vnX2Yq-AqXTm_xVhH9LML0aCtTJiWkHzGak1l1KlyUU_4EOKPdIj4aRn1nOu0LkuIuSBLDCnvMGE6J2-cHhNePJ1n5Punm2_Xt_X9l8931x_va9OyIddWdrzl3EphLaIbkDIuELfC9F3bmV44JhiX0lCHGijrscQoagfgBqENPyMfju-W6p8rpqwmnwyOZTEMa1JMUAFdOwha0PaImrJliujUEv2k46OioA721V4d7auDfQVcFfsl9v6pYd1OaF9Cz7oLcHUEsPzzl8eokvE4F4M-osnKBv__hr8F6Jt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515064851</pqid></control><display><type>article</type><title>Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prostheses</title><source>Elsevier ScienceDirect Journals</source><creator>Bergamo, Edmara T.P. ; Bastos, Tiago M.C. ; Lopes, Adolfo C.O. ; de Araujo Júnior, Everardo N.S. ; Coelho, Paulo G. ; Benalcazar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</creator><creatorcontrib>Bergamo, Edmara T.P. ; Bastos, Tiago M.C. ; Lopes, Adolfo C.O. ; de Araujo Júnior, Everardo N.S. ; Coelho, Paulo G. ; Benalcazar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</creatorcontrib><description>[Display omitted] •FRC contained epoxy resin matrix with 30% inorganic compound and 45% glass fiber.•Continuous regular glass fibers were parallelly distributed in a bidirectional way.•FRC FDPs showed high reliability for a masticatory load in the posterior region.•Extended FRC framework resulted in higher reliability than conventional framework.•Veneering composite cohesive or adhesive fractures were the chief failure modes. To characterize the physicochemical and mechanical properties of a milled fiber-reinforced composite (FRC) for implant-supported fixed dental prostheses (FDPs). For FRC characterization, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier-transformed infrared spectrometry, simultaneous thermogravimetric analysis and differential scanning calorimetry were performed. For fatigue testing, 3-unit FRC frameworks were fabricated with conventional (9 mm2 connector area) and modified designs (12 mm2 connector area and 2.5 mm-height lingual extension). A hybrid resin composite was veneered onto the frameworks. FDPs were subjected to step-stress accelerated-life fatigue testing until fracture or suspension. Use level probability Weibull curves at 300 N were plotted and the reliability for 100,000 cycles at 300, 600 and 800 N was calculated. Fractographic analysis was performed by stereomicroscope and SEM. The FRC consisted of an epoxy resin (∼25%) matrix reinforced with inorganic particles and glass fibers (∼75%). Multi-layer continuous regular-geometry fibers were densely arranged in a parallel and bidirectional fashion in the resin matrix. Fatigue analysis demonstrated high probability of survival (99%) for FDPs at 300 N, irrespective of framework design. Conventional FDPs showed a progressive decrease in the reliability at 600 (84%) and 800 N (19%), whereas modified FDPs reliability significantly reduced only at 800 N (75%). The chief failure modes for FRC FDPs were cohesive fracture of the veneering composite on lower loads and adhesive fracture of the veneering composite at higher loads. Milled epoxy resin matrix reinforced with glass fibers composite resulted in high probability of survival in the implant-supported prosthesis scenario.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2021.03.014</identifier><identifier>PMID: 33865619</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Dental implants ; Dental materials ; Dental prosthesis ; Dentistry</subject><ispartof>Dental materials, 2021-08, Vol.37 (8), p.e443-e453</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d963433d95ddeef8e1235eeb5c7646c75f252399c1fea0127e4281eaf00f85ac3</citedby><cites>FETCH-LOGICAL-c428t-d963433d95ddeef8e1235eeb5c7646c75f252399c1fea0127e4281eaf00f85ac3</cites><orcidid>0000-0002-5769-6913 ; 0000-0002-5006-2184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0109564121001172$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33865619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergamo, Edmara T.P.</creatorcontrib><creatorcontrib>Bastos, Tiago M.C.</creatorcontrib><creatorcontrib>Lopes, Adolfo C.O.</creatorcontrib><creatorcontrib>de Araujo Júnior, Everardo N.S.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Benalcazar Jalkh, Ernesto B.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><title>Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prostheses</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>[Display omitted] •FRC contained epoxy resin matrix with 30% inorganic compound and 45% glass fiber.•Continuous regular glass fibers were parallelly distributed in a bidirectional way.•FRC FDPs showed high reliability for a masticatory load in the posterior region.•Extended FRC framework resulted in higher reliability than conventional framework.•Veneering composite cohesive or adhesive fractures were the chief failure modes. To characterize the physicochemical and mechanical properties of a milled fiber-reinforced composite (FRC) for implant-supported fixed dental prostheses (FDPs). For FRC characterization, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier-transformed infrared spectrometry, simultaneous thermogravimetric analysis and differential scanning calorimetry were performed. For fatigue testing, 3-unit FRC frameworks were fabricated with conventional (9 mm2 connector area) and modified designs (12 mm2 connector area and 2.5 mm-height lingual extension). A hybrid resin composite was veneered onto the frameworks. FDPs were subjected to step-stress accelerated-life fatigue testing until fracture or suspension. Use level probability Weibull curves at 300 N were plotted and the reliability for 100,000 cycles at 300, 600 and 800 N was calculated. Fractographic analysis was performed by stereomicroscope and SEM. The FRC consisted of an epoxy resin (∼25%) matrix reinforced with inorganic particles and glass fibers (∼75%). Multi-layer continuous regular-geometry fibers were densely arranged in a parallel and bidirectional fashion in the resin matrix. Fatigue analysis demonstrated high probability of survival (99%) for FDPs at 300 N, irrespective of framework design. Conventional FDPs showed a progressive decrease in the reliability at 600 (84%) and 800 N (19%), whereas modified FDPs reliability significantly reduced only at 800 N (75%). The chief failure modes for FRC FDPs were cohesive fracture of the veneering composite on lower loads and adhesive fracture of the veneering composite at higher loads. Milled epoxy resin matrix reinforced with glass fibers composite resulted in high probability of survival in the implant-supported prosthesis scenario.</description><subject>Dental implants</subject><subject>Dental materials</subject><subject>Dental prosthesis</subject><subject>Dentistry</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAURi0EotOfN0AoSzZJr-04iTeVUFVopUqwgLXlsa81HpI42A5VWfLkeJi2S1b2lc7n7_oQ8o5CQ4F2l_vG4pz12DBgtAHeAG1fkQ0delkDyP412QAFWYuupSfkNKU9ALRM0rfkhPOhEx2VG_Ln6-4xeRPMDidv9Fjp2VYTmp2e_43lErXJGP1vnX2Yq-AqXTm_xVhH9LML0aCtTJiWkHzGak1l1KlyUU_4EOKPdIj4aRn1nOu0LkuIuSBLDCnvMGE6J2-cHhNePJ1n5Punm2_Xt_X9l8931x_va9OyIddWdrzl3EphLaIbkDIuELfC9F3bmV44JhiX0lCHGijrscQoagfgBqENPyMfju-W6p8rpqwmnwyOZTEMa1JMUAFdOwha0PaImrJliujUEv2k46OioA721V4d7auDfQVcFfsl9v6pYd1OaF9Cz7oLcHUEsPzzl8eokvE4F4M-osnKBv__hr8F6Jt0</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Bergamo, Edmara T.P.</creator><creator>Bastos, Tiago M.C.</creator><creator>Lopes, Adolfo C.O.</creator><creator>de Araujo Júnior, Everardo N.S.</creator><creator>Coelho, Paulo G.</creator><creator>Benalcazar Jalkh, Ernesto B.</creator><creator>Zahoui, Abbas</creator><creator>Bonfante, Estevam A.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5769-6913</orcidid><orcidid>https://orcid.org/0000-0002-5006-2184</orcidid></search><sort><creationdate>20210801</creationdate><title>Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prostheses</title><author>Bergamo, Edmara T.P. ; Bastos, Tiago M.C. ; Lopes, Adolfo C.O. ; de Araujo Júnior, Everardo N.S. ; Coelho, Paulo G. ; Benalcazar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d963433d95ddeef8e1235eeb5c7646c75f252399c1fea0127e4281eaf00f85ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dental implants</topic><topic>Dental materials</topic><topic>Dental prosthesis</topic><topic>Dentistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergamo, Edmara T.P.</creatorcontrib><creatorcontrib>Bastos, Tiago M.C.</creatorcontrib><creatorcontrib>Lopes, Adolfo C.O.</creatorcontrib><creatorcontrib>de Araujo Júnior, Everardo N.S.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>Benalcazar Jalkh, Ernesto B.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergamo, Edmara T.P.</au><au>Bastos, Tiago M.C.</au><au>Lopes, Adolfo C.O.</au><au>de Araujo Júnior, Everardo N.S.</au><au>Coelho, Paulo G.</au><au>Benalcazar Jalkh, Ernesto B.</au><au>Zahoui, Abbas</au><au>Bonfante, Estevam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prostheses</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>37</volume><issue>8</issue><spage>e443</spage><epage>e453</epage><pages>e443-e453</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>[Display omitted] •FRC contained epoxy resin matrix with 30% inorganic compound and 45% glass fiber.•Continuous regular glass fibers were parallelly distributed in a bidirectional way.•FRC FDPs showed high reliability for a masticatory load in the posterior region.•Extended FRC framework resulted in higher reliability than conventional framework.•Veneering composite cohesive or adhesive fractures were the chief failure modes. To characterize the physicochemical and mechanical properties of a milled fiber-reinforced composite (FRC) for implant-supported fixed dental prostheses (FDPs). For FRC characterization, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier-transformed infrared spectrometry, simultaneous thermogravimetric analysis and differential scanning calorimetry were performed. For fatigue testing, 3-unit FRC frameworks were fabricated with conventional (9 mm2 connector area) and modified designs (12 mm2 connector area and 2.5 mm-height lingual extension). A hybrid resin composite was veneered onto the frameworks. FDPs were subjected to step-stress accelerated-life fatigue testing until fracture or suspension. Use level probability Weibull curves at 300 N were plotted and the reliability for 100,000 cycles at 300, 600 and 800 N was calculated. Fractographic analysis was performed by stereomicroscope and SEM. The FRC consisted of an epoxy resin (∼25%) matrix reinforced with inorganic particles and glass fibers (∼75%). Multi-layer continuous regular-geometry fibers were densely arranged in a parallel and bidirectional fashion in the resin matrix. Fatigue analysis demonstrated high probability of survival (99%) for FDPs at 300 N, irrespective of framework design. Conventional FDPs showed a progressive decrease in the reliability at 600 (84%) and 800 N (19%), whereas modified FDPs reliability significantly reduced only at 800 N (75%). The chief failure modes for FRC FDPs were cohesive fracture of the veneering composite on lower loads and adhesive fracture of the veneering composite at higher loads. Milled epoxy resin matrix reinforced with glass fibers composite resulted in high probability of survival in the implant-supported prosthesis scenario.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>33865619</pmid><doi>10.1016/j.dental.2021.03.014</doi><orcidid>https://orcid.org/0000-0002-5769-6913</orcidid><orcidid>https://orcid.org/0000-0002-5006-2184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2021-08, Vol.37 (8), p.e443-e453
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_miscellaneous_2515064851
source Elsevier ScienceDirect Journals
subjects Dental implants
Dental materials
Dental prosthesis
Dentistry
title Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prostheses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20and%20mechanical%20characterization%20of%20a%20fiber-reinforced%20composite%20used%20as%20frameworks%20of%20implant-supported%20prostheses&rft.jtitle=Dental%20materials&rft.au=Bergamo,%20Edmara%20T.P.&rft.date=2021-08-01&rft.volume=37&rft.issue=8&rft.spage=e443&rft.epage=e453&rft.pages=e443-e453&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2021.03.014&rft_dat=%3Cproquest_cross%3E2515064851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515064851&rft_id=info:pmid/33865619&rft_els_id=S0109564121001172&rfr_iscdi=true