Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor

The unique properties of heterostructure materials make them become a promising candidate for high-performance room-temperature (RT) NO2 sensing. Herein, a p-n heterojunction consisting of two-dimensional (2D) MoS2 nanoflakes vertically grown on one-dimensional (1D) SnO2 nanotubes (NTs) was fabricat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2021-08, Vol.416, p.125830-125830, Article 125830
Hauptverfasser: Bai, Xue, Lv, He, Liu, Zhuo, Chen, Junkun, Wang, Jue, Sun, Baihe, Zhang, Yang, Wang, Ruihong, Shi, Keying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125830
container_issue
container_start_page 125830
container_title Journal of hazardous materials
container_volume 416
creator Bai, Xue
Lv, He
Liu, Zhuo
Chen, Junkun
Wang, Jue
Sun, Baihe
Zhang, Yang
Wang, Ruihong
Shi, Keying
description The unique properties of heterostructure materials make them become a promising candidate for high-performance room-temperature (RT) NO2 sensing. Herein, a p-n heterojunction consisting of two-dimensional (2D) MoS2 nanoflakes vertically grown on one-dimensional (1D) SnO2 nanotubes (NTs) was fabricated via electrospinning and subsequent hydrothermal route. The sulfur edge active sites are fully exposed in the MoS2@SnO2 heterostructure due to the vertically oriented thin-layered morphology features. Moreover, the interface of p-n heterojunction provides an electronic transfer channel from SnO2 to MoS2, which enables MoS2 act as the generous electron donor involved in NO2 gas senor detection. As a result, the optimized MoS2@SnO2-2 heterostructure presents an impressive sensitivity and selectivity for NO2 gas detection at RT. The response value is 34.67 (Ra/Rg) to 100 ppm, which is 26.5 times to that of pure SnO2. It also exhibits a fast response and recovery time (2.2 s, 10.54 s), as well as a low detection limit (10 ppb) and as long as 20 weeks of stability. This simple fabrication of high-performance sensing materials may facilitate the large-scale production of RT NO2 gas sensors. [Display omitted] •Thin-layers MoS2 nanoflakes grown vertically on SnO2 nanotubes were synthesized by a simple strategy.•p-n heterojunctions provide a pathway for electron transfer and target gas diffusion.•Optimized MoS2@SnO2 sensor presents 26.5 times response value to that of pure SnO2.•Fast response and recovery time (2.2 s, 10.54 s), low detection limit (10 ppb).•The sensor maintains a good stability in the whole 20 weeks.
doi_str_mv 10.1016/j.jhazmat.2021.125830
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2514605641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389421007949</els_id><sourcerecordid>2514605641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-8858c44026505049afdb1aed500a7b789d0ad9fd37ca3d3aa1992618ec544d293</originalsourceid><addsrcrecordid>eNqFkLtuGzEQRYkgBqLY-YQALNOsPHztowoCIy_AsQs7NTEiZyUqu6RCrmQoX-811n2qac65wBzGPgpYCxD19X693-G_Eae1BCnWQppWwRu2Em2jKqVU_ZatQIGuVNvpd-x9KXsAEI3RK1YedyFWA54pk-e_0oPkEWPqB_xDhZ8oT8HhMJz5NqenyFPkD_F-YabjZkaw8F3Y7maC-p7cFE7Ec0pjNdF4oIzTMRO_m5XtTBaKJeUrdtHjUOjD671kv799fbz5Ud3ef_958-W2ckrLqWpb0zqtQdYGDOgOe78RSN4AYLNp2s4D-q73qnGovEIUXSdr0ZIzWnvZqUv2adk95PT3SGWyYyiOhgEjpWOx0ghdg6m1mFGzoC6nUjL19pDDiPlsBdiXyHZvXyPbl8h2iTx7nxeP5j9OgbItLlB05EOeY1ifwn8WngFRT4kI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514605641</pqid></control><display><type>article</type><title>Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bai, Xue ; Lv, He ; Liu, Zhuo ; Chen, Junkun ; Wang, Jue ; Sun, Baihe ; Zhang, Yang ; Wang, Ruihong ; Shi, Keying</creator><creatorcontrib>Bai, Xue ; Lv, He ; Liu, Zhuo ; Chen, Junkun ; Wang, Jue ; Sun, Baihe ; Zhang, Yang ; Wang, Ruihong ; Shi, Keying</creatorcontrib><description>The unique properties of heterostructure materials make them become a promising candidate for high-performance room-temperature (RT) NO2 sensing. Herein, a p-n heterojunction consisting of two-dimensional (2D) MoS2 nanoflakes vertically grown on one-dimensional (1D) SnO2 nanotubes (NTs) was fabricated via electrospinning and subsequent hydrothermal route. The sulfur edge active sites are fully exposed in the MoS2@SnO2 heterostructure due to the vertically oriented thin-layered morphology features. Moreover, the interface of p-n heterojunction provides an electronic transfer channel from SnO2 to MoS2, which enables MoS2 act as the generous electron donor involved in NO2 gas senor detection. As a result, the optimized MoS2@SnO2-2 heterostructure presents an impressive sensitivity and selectivity for NO2 gas detection at RT. The response value is 34.67 (Ra/Rg) to 100 ppm, which is 26.5 times to that of pure SnO2. It also exhibits a fast response and recovery time (2.2 s, 10.54 s), as well as a low detection limit (10 ppb) and as long as 20 weeks of stability. This simple fabrication of high-performance sensing materials may facilitate the large-scale production of RT NO2 gas sensors. [Display omitted] •Thin-layers MoS2 nanoflakes grown vertically on SnO2 nanotubes were synthesized by a simple strategy.•p-n heterojunctions provide a pathway for electron transfer and target gas diffusion.•Optimized MoS2@SnO2 sensor presents 26.5 times response value to that of pure SnO2.•Fast response and recovery time (2.2 s, 10.54 s), low detection limit (10 ppb).•The sensor maintains a good stability in the whole 20 weeks.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2021.125830</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>High sensitivity ; P-n heterojunction ; Room-temperature NO2 sensors ; Thin-layered MoS2 nanoflakes ; Vertically grown</subject><ispartof>Journal of hazardous materials, 2021-08, Vol.416, p.125830-125830, Article 125830</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-8858c44026505049afdb1aed500a7b789d0ad9fd37ca3d3aa1992618ec544d293</citedby><cites>FETCH-LOGICAL-c342t-8858c44026505049afdb1aed500a7b789d0ad9fd37ca3d3aa1992618ec544d293</cites><orcidid>0000-0002-9549-0190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2021.125830$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Chen, Junkun</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Sun, Baihe</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Ruihong</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><title>Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor</title><title>Journal of hazardous materials</title><description>The unique properties of heterostructure materials make them become a promising candidate for high-performance room-temperature (RT) NO2 sensing. Herein, a p-n heterojunction consisting of two-dimensional (2D) MoS2 nanoflakes vertically grown on one-dimensional (1D) SnO2 nanotubes (NTs) was fabricated via electrospinning and subsequent hydrothermal route. The sulfur edge active sites are fully exposed in the MoS2@SnO2 heterostructure due to the vertically oriented thin-layered morphology features. Moreover, the interface of p-n heterojunction provides an electronic transfer channel from SnO2 to MoS2, which enables MoS2 act as the generous electron donor involved in NO2 gas senor detection. As a result, the optimized MoS2@SnO2-2 heterostructure presents an impressive sensitivity and selectivity for NO2 gas detection at RT. The response value is 34.67 (Ra/Rg) to 100 ppm, which is 26.5 times to that of pure SnO2. It also exhibits a fast response and recovery time (2.2 s, 10.54 s), as well as a low detection limit (10 ppb) and as long as 20 weeks of stability. This simple fabrication of high-performance sensing materials may facilitate the large-scale production of RT NO2 gas sensors. [Display omitted] •Thin-layers MoS2 nanoflakes grown vertically on SnO2 nanotubes were synthesized by a simple strategy.•p-n heterojunctions provide a pathway for electron transfer and target gas diffusion.•Optimized MoS2@SnO2 sensor presents 26.5 times response value to that of pure SnO2.•Fast response and recovery time (2.2 s, 10.54 s), low detection limit (10 ppb).•The sensor maintains a good stability in the whole 20 weeks.</description><subject>High sensitivity</subject><subject>P-n heterojunction</subject><subject>Room-temperature NO2 sensors</subject><subject>Thin-layered MoS2 nanoflakes</subject><subject>Vertically grown</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtuGzEQRYkgBqLY-YQALNOsPHztowoCIy_AsQs7NTEiZyUqu6RCrmQoX-811n2qac65wBzGPgpYCxD19X693-G_Eae1BCnWQppWwRu2Em2jKqVU_ZatQIGuVNvpd-x9KXsAEI3RK1YedyFWA54pk-e_0oPkEWPqB_xDhZ8oT8HhMJz5NqenyFPkD_F-YabjZkaw8F3Y7maC-p7cFE7Ec0pjNdF4oIzTMRO_m5XtTBaKJeUrdtHjUOjD671kv799fbz5Ud3ef_958-W2ckrLqWpb0zqtQdYGDOgOe78RSN4AYLNp2s4D-q73qnGovEIUXSdr0ZIzWnvZqUv2adk95PT3SGWyYyiOhgEjpWOx0ghdg6m1mFGzoC6nUjL19pDDiPlsBdiXyHZvXyPbl8h2iTx7nxeP5j9OgbItLlB05EOeY1ifwn8WngFRT4kI</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Bai, Xue</creator><creator>Lv, He</creator><creator>Liu, Zhuo</creator><creator>Chen, Junkun</creator><creator>Wang, Jue</creator><creator>Sun, Baihe</creator><creator>Zhang, Yang</creator><creator>Wang, Ruihong</creator><creator>Shi, Keying</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9549-0190</orcidid></search><sort><creationdate>20210815</creationdate><title>Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor</title><author>Bai, Xue ; Lv, He ; Liu, Zhuo ; Chen, Junkun ; Wang, Jue ; Sun, Baihe ; Zhang, Yang ; Wang, Ruihong ; Shi, Keying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-8858c44026505049afdb1aed500a7b789d0ad9fd37ca3d3aa1992618ec544d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>High sensitivity</topic><topic>P-n heterojunction</topic><topic>Room-temperature NO2 sensors</topic><topic>Thin-layered MoS2 nanoflakes</topic><topic>Vertically grown</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xue</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Chen, Junkun</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Sun, Baihe</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Ruihong</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xue</au><au>Lv, He</au><au>Liu, Zhuo</au><au>Chen, Junkun</au><au>Wang, Jue</au><au>Sun, Baihe</au><au>Zhang, Yang</au><au>Wang, Ruihong</au><au>Shi, Keying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor</atitle><jtitle>Journal of hazardous materials</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>416</volume><spage>125830</spage><epage>125830</epage><pages>125830-125830</pages><artnum>125830</artnum><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>The unique properties of heterostructure materials make them become a promising candidate for high-performance room-temperature (RT) NO2 sensing. Herein, a p-n heterojunction consisting of two-dimensional (2D) MoS2 nanoflakes vertically grown on one-dimensional (1D) SnO2 nanotubes (NTs) was fabricated via electrospinning and subsequent hydrothermal route. The sulfur edge active sites are fully exposed in the MoS2@SnO2 heterostructure due to the vertically oriented thin-layered morphology features. Moreover, the interface of p-n heterojunction provides an electronic transfer channel from SnO2 to MoS2, which enables MoS2 act as the generous electron donor involved in NO2 gas senor detection. As a result, the optimized MoS2@SnO2-2 heterostructure presents an impressive sensitivity and selectivity for NO2 gas detection at RT. The response value is 34.67 (Ra/Rg) to 100 ppm, which is 26.5 times to that of pure SnO2. It also exhibits a fast response and recovery time (2.2 s, 10.54 s), as well as a low detection limit (10 ppb) and as long as 20 weeks of stability. This simple fabrication of high-performance sensing materials may facilitate the large-scale production of RT NO2 gas sensors. [Display omitted] •Thin-layers MoS2 nanoflakes grown vertically on SnO2 nanotubes were synthesized by a simple strategy.•p-n heterojunctions provide a pathway for electron transfer and target gas diffusion.•Optimized MoS2@SnO2 sensor presents 26.5 times response value to that of pure SnO2.•Fast response and recovery time (2.2 s, 10.54 s), low detection limit (10 ppb).•The sensor maintains a good stability in the whole 20 weeks.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhazmat.2021.125830</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9549-0190</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2021-08, Vol.416, p.125830-125830, Article 125830
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_2514605641
source Access via ScienceDirect (Elsevier)
subjects High sensitivity
P-n heterojunction
Room-temperature NO2 sensors
Thin-layered MoS2 nanoflakes
Vertically grown
title Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-layered%20MoS2%20nanoflakes%20vertically%20grown%20on%20SnO2%20nanotubes%20as%20highly%20effective%20room-temperature%20NO2%20gas%20sensor&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Bai,%20Xue&rft.date=2021-08-15&rft.volume=416&rft.spage=125830&rft.epage=125830&rft.pages=125830-125830&rft.artnum=125830&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2021.125830&rft_dat=%3Cproquest_cross%3E2514605641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514605641&rft_id=info:pmid/&rft_els_id=S0304389421007949&rfr_iscdi=true