Nonequilibrium Capillary Pressure of a Miscible Meniscus

We examine the dynamics of a miscible displacement in a capillary, calculating the nonequilibrium capillary pressure of a moving (and slowly diffusing) miscible meniscus. During the displacement, the capillary pressure varies with time following stretching and smearing of a miscible interface. The c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2021-04, Vol.37 (16), p.4817-4826
Hauptverfasser: Vorobev, Anatoliy, Prokopev, Sergei, Lyubimova, Tatyana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4826
container_issue 16
container_start_page 4817
container_title Langmuir
container_volume 37
creator Vorobev, Anatoliy
Prokopev, Sergei
Lyubimova, Tatyana
description We examine the dynamics of a miscible displacement in a capillary, calculating the nonequilibrium capillary pressure of a moving (and slowly diffusing) miscible meniscus. During the displacement, the capillary pressure varies with time following stretching and smearing of a miscible interface. The capillary pressure remains different from zero for a long time (on a diffusion time scale), slowing the displacement. This capillary pressure is however completely ignored by all theories currently available for practical modeling of miscible displacements in capillaries and porous matrices.
doi_str_mv 10.1021/acs.langmuir.0c03633
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2514598512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514598512</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-5094580d34f32b0a06e0c41808d5db9c4db1e8bf316e49d6e0fb8568f149eb843</originalsourceid><addsrcrecordid>eNp9kE9PAjEQxRujEUS_gTF79LI43bZLezRE1ATUg56bdnfWlOwfaOnBb28J4NHTTDLvzbz5EXJLYUqhoA-mCtPW9N9ddH4KFbCSsTMypqKAXMhidk7GMOMsn_GSjchVCGsAUIyrSzJiTIpSUjYm8m3ocRtd66x3scvmZuPa1vif7MNjCNFjNjSZyVYuVM62mK2wT20M1-SiMW3Am2OdkK_F0-f8JV--P7_OH5e5YYrvcgGKCwk14w0rLBgoESpOJcha1FZVvLYUpW0YLZGrOk0bu8_WUK7QSs4m5P6wd-OHbcSw0126jyljj0MMuhCUCyUFLZKUH6SVH0Lw2OiNd136RVPQe2Y6MdMnZvrILNnujhei7bD-M50gJQEcBHv7eoi-Tw__v_MX8Ax7Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514598512</pqid></control><display><type>article</type><title>Nonequilibrium Capillary Pressure of a Miscible Meniscus</title><source>American Chemical Society Journals</source><creator>Vorobev, Anatoliy ; Prokopev, Sergei ; Lyubimova, Tatyana</creator><creatorcontrib>Vorobev, Anatoliy ; Prokopev, Sergei ; Lyubimova, Tatyana</creatorcontrib><description>We examine the dynamics of a miscible displacement in a capillary, calculating the nonequilibrium capillary pressure of a moving (and slowly diffusing) miscible meniscus. During the displacement, the capillary pressure varies with time following stretching and smearing of a miscible interface. The capillary pressure remains different from zero for a long time (on a diffusion time scale), slowing the displacement. This capillary pressure is however completely ignored by all theories currently available for practical modeling of miscible displacements in capillaries and porous matrices.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c03633</identifier><identifier>PMID: 33856813</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2021-04, Vol.37 (16), p.4817-4826</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-5094580d34f32b0a06e0c41808d5db9c4db1e8bf316e49d6e0fb8568f149eb843</citedby><cites>FETCH-LOGICAL-a394t-5094580d34f32b0a06e0c41808d5db9c4db1e8bf316e49d6e0fb8568f149eb843</cites><orcidid>0000-0002-6458-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.0c03633$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c03633$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vorobev, Anatoliy</creatorcontrib><creatorcontrib>Prokopev, Sergei</creatorcontrib><creatorcontrib>Lyubimova, Tatyana</creatorcontrib><title>Nonequilibrium Capillary Pressure of a Miscible Meniscus</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We examine the dynamics of a miscible displacement in a capillary, calculating the nonequilibrium capillary pressure of a moving (and slowly diffusing) miscible meniscus. During the displacement, the capillary pressure varies with time following stretching and smearing of a miscible interface. The capillary pressure remains different from zero for a long time (on a diffusion time scale), slowing the displacement. This capillary pressure is however completely ignored by all theories currently available for practical modeling of miscible displacements in capillaries and porous matrices.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAjEQxRujEUS_gTF79LI43bZLezRE1ATUg56bdnfWlOwfaOnBb28J4NHTTDLvzbz5EXJLYUqhoA-mCtPW9N9ddH4KFbCSsTMypqKAXMhidk7GMOMsn_GSjchVCGsAUIyrSzJiTIpSUjYm8m3ocRtd66x3scvmZuPa1vif7MNjCNFjNjSZyVYuVM62mK2wT20M1-SiMW3Am2OdkK_F0-f8JV--P7_OH5e5YYrvcgGKCwk14w0rLBgoESpOJcha1FZVvLYUpW0YLZGrOk0bu8_WUK7QSs4m5P6wd-OHbcSw0126jyljj0MMuhCUCyUFLZKUH6SVH0Lw2OiNd136RVPQe2Y6MdMnZvrILNnujhei7bD-M50gJQEcBHv7eoi-Tw__v_MX8Ax7Dg</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Vorobev, Anatoliy</creator><creator>Prokopev, Sergei</creator><creator>Lyubimova, Tatyana</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6458-9390</orcidid></search><sort><creationdate>20210427</creationdate><title>Nonequilibrium Capillary Pressure of a Miscible Meniscus</title><author>Vorobev, Anatoliy ; Prokopev, Sergei ; Lyubimova, Tatyana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-5094580d34f32b0a06e0c41808d5db9c4db1e8bf316e49d6e0fb8568f149eb843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorobev, Anatoliy</creatorcontrib><creatorcontrib>Prokopev, Sergei</creatorcontrib><creatorcontrib>Lyubimova, Tatyana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorobev, Anatoliy</au><au>Prokopev, Sergei</au><au>Lyubimova, Tatyana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium Capillary Pressure of a Miscible Meniscus</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>37</volume><issue>16</issue><spage>4817</spage><epage>4826</epage><pages>4817-4826</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We examine the dynamics of a miscible displacement in a capillary, calculating the nonequilibrium capillary pressure of a moving (and slowly diffusing) miscible meniscus. During the displacement, the capillary pressure varies with time following stretching and smearing of a miscible interface. The capillary pressure remains different from zero for a long time (on a diffusion time scale), slowing the displacement. This capillary pressure is however completely ignored by all theories currently available for practical modeling of miscible displacements in capillaries and porous matrices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33856813</pmid><doi>10.1021/acs.langmuir.0c03633</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6458-9390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2021-04, Vol.37 (16), p.4817-4826
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2514598512
source American Chemical Society Journals
title Nonequilibrium Capillary Pressure of a Miscible Meniscus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20Capillary%20Pressure%20of%20a%20Miscible%20Meniscus&rft.jtitle=Langmuir&rft.au=Vorobev,%20Anatoliy&rft.date=2021-04-27&rft.volume=37&rft.issue=16&rft.spage=4817&rft.epage=4826&rft.pages=4817-4826&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c03633&rft_dat=%3Cproquest_cross%3E2514598512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514598512&rft_id=info:pmid/33856813&rfr_iscdi=true