Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields
Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphou...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2021-05, Vol.121 (10), p.5986-6056 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6056 |
---|---|
container_issue | 10 |
container_start_page | 5986 |
container_title | Chemical reviews |
container_volume | 121 |
creator | Zou, Peichao Sui, Yiming Zhan, Houchao Wang, Chunyang Xin, Huolin L Cheng, Hui-Ming Kang, Feiyu Yang, Cheng |
description | Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected. |
doi_str_mv | 10.1021/acs.chemrev.0c01100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2514594017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535885071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhS1EVba0vwAJWeLSS5ZxHMfOESEolRYVAT1HjmMTr5x4sWOk_ff1slsOPfQ0Gs333ozmIXRGYEmgJJdSxaUa9Bj02xIUEAJwhBaElVDUooFjtACApijrmp2gLzGuc8tYyT-jE0pFTYDDAq0fvNuOPmwGfPPmXZqtn_C9VoOcbBwjllOPH_VLcvJ98jQHOesXqyP2Bq_sPNg0Zn6WDl9Nvtc4Tb0O-D652W6GbbQqT26tdn38ij4Z6aL-dqin6PftzfP1XbH69ePn9dWqkBVt5sKYEoQRvaKdIIZLqBmXnBpKdVfxstOUCVFlVlVMKsNVwzgXlEPXs4pRQU_R973vJvjXpOPcjjYq7ZyctE-xLRmpWFMB4Rm9-Add-xSmfF2mdnsYcJIpuqdU8DEGbdpNsKMM25ZAu4uizVG0hyjaQxRZdX7wTt2o-w_N399n4HIP7NQfe_9n-QfBb5ff</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535885071</pqid></control><display><type>article</type><title>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</title><source>ACS Publications</source><creator>Zou, Peichao ; Sui, Yiming ; Zhan, Houchao ; Wang, Chunyang ; Xin, Huolin L ; Cheng, Hui-Ming ; Kang, Feiyu ; Yang, Cheng</creator><creatorcontrib>Zou, Peichao ; Sui, Yiming ; Zhan, Houchao ; Wang, Chunyang ; Xin, Huolin L ; Cheng, Hui-Ming ; Kang, Feiyu ; Yang, Cheng</creatorcontrib><description>Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c01100</identifier><identifier>PMID: 33861070</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anodes ; Dendrites ; Electric fields ; Electrochemistry ; Electrode materials ; Electrolytes ; Evolution ; Lithium ; Metallurgy ; Metals ; Mosses ; Nucleation ; Plating ; Redox reactions ; Safety ; Solid electrolytes ; Stability ; Stress concentration ; Stress distribution ; Temperature distribution</subject><ispartof>Chemical reviews, 2021-05, Vol.121 (10), p.5986-6056</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society May 26, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</citedby><cites>FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</cites><orcidid>0000-0001-8461-3952 ; 0000-0003-2618-4787 ; 0000-0003-0148-7482 ; 0000-0002-5387-4241 ; 0000-0002-6521-868X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c01100$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c01100$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33861070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Peichao</creatorcontrib><creatorcontrib>Sui, Yiming</creatorcontrib><creatorcontrib>Zhan, Houchao</creatorcontrib><creatorcontrib>Wang, Chunyang</creatorcontrib><creatorcontrib>Xin, Huolin L</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><title>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.</description><subject>Anodes</subject><subject>Dendrites</subject><subject>Electric fields</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>Lithium</subject><subject>Metallurgy</subject><subject>Metals</subject><subject>Mosses</subject><subject>Nucleation</subject><subject>Plating</subject><subject>Redox reactions</subject><subject>Safety</subject><subject>Solid electrolytes</subject><subject>Stability</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Temperature distribution</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQhS1EVba0vwAJWeLSS5ZxHMfOESEolRYVAT1HjmMTr5x4sWOk_ff1slsOPfQ0Gs333ozmIXRGYEmgJJdSxaUa9Bj02xIUEAJwhBaElVDUooFjtACApijrmp2gLzGuc8tYyT-jE0pFTYDDAq0fvNuOPmwGfPPmXZqtn_C9VoOcbBwjllOPH_VLcvJ98jQHOesXqyP2Bq_sPNg0Zn6WDl9Nvtc4Tb0O-D652W6GbbQqT26tdn38ij4Z6aL-dqin6PftzfP1XbH69ePn9dWqkBVt5sKYEoQRvaKdIIZLqBmXnBpKdVfxstOUCVFlVlVMKsNVwzgXlEPXs4pRQU_R973vJvjXpOPcjjYq7ZyctE-xLRmpWFMB4Rm9-Add-xSmfF2mdnsYcJIpuqdU8DEGbdpNsKMM25ZAu4uizVG0hyjaQxRZdX7wTt2o-w_N399n4HIP7NQfe_9n-QfBb5ff</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Zou, Peichao</creator><creator>Sui, Yiming</creator><creator>Zhan, Houchao</creator><creator>Wang, Chunyang</creator><creator>Xin, Huolin L</creator><creator>Cheng, Hui-Ming</creator><creator>Kang, Feiyu</creator><creator>Yang, Cheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8461-3952</orcidid><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid><orcidid>https://orcid.org/0000-0003-0148-7482</orcidid><orcidid>https://orcid.org/0000-0002-5387-4241</orcidid><orcidid>https://orcid.org/0000-0002-6521-868X</orcidid></search><sort><creationdate>20210526</creationdate><title>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</title><author>Zou, Peichao ; Sui, Yiming ; Zhan, Houchao ; Wang, Chunyang ; Xin, Huolin L ; Cheng, Hui-Ming ; Kang, Feiyu ; Yang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Dendrites</topic><topic>Electric fields</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>Lithium</topic><topic>Metallurgy</topic><topic>Metals</topic><topic>Mosses</topic><topic>Nucleation</topic><topic>Plating</topic><topic>Redox reactions</topic><topic>Safety</topic><topic>Solid electrolytes</topic><topic>Stability</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Peichao</creatorcontrib><creatorcontrib>Sui, Yiming</creatorcontrib><creatorcontrib>Zhan, Houchao</creatorcontrib><creatorcontrib>Wang, Chunyang</creatorcontrib><creatorcontrib>Xin, Huolin L</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Peichao</au><au>Sui, Yiming</au><au>Zhan, Houchao</au><au>Wang, Chunyang</au><au>Xin, Huolin L</au><au>Cheng, Hui-Ming</au><au>Kang, Feiyu</au><au>Yang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2021-05-26</date><risdate>2021</risdate><volume>121</volume><issue>10</issue><spage>5986</spage><epage>6056</epage><pages>5986-6056</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33861070</pmid><doi>10.1021/acs.chemrev.0c01100</doi><tpages>71</tpages><orcidid>https://orcid.org/0000-0001-8461-3952</orcidid><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid><orcidid>https://orcid.org/0000-0003-0148-7482</orcidid><orcidid>https://orcid.org/0000-0002-5387-4241</orcidid><orcidid>https://orcid.org/0000-0002-6521-868X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2021-05, Vol.121 (10), p.5986-6056 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_proquest_miscellaneous_2514594017 |
source | ACS Publications |
subjects | Anodes Dendrites Electric fields Electrochemistry Electrode materials Electrolytes Evolution Lithium Metallurgy Metals Mosses Nucleation Plating Redox reactions Safety Solid electrolytes Stability Stress concentration Stress distribution Temperature distribution |
title | Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymorph%20Evolution%20Mechanisms%20and%20Regulation%20Strategies%20of%20Lithium%20Metal%20Anode%20under%20Multiphysical%20Fields&rft.jtitle=Chemical%20reviews&rft.au=Zou,%20Peichao&rft.date=2021-05-26&rft.volume=121&rft.issue=10&rft.spage=5986&rft.epage=6056&rft.pages=5986-6056&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c01100&rft_dat=%3Cproquest_cross%3E2535885071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535885071&rft_id=info:pmid/33861070&rfr_iscdi=true |