Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields

Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2021-05, Vol.121 (10), p.5986-6056
Hauptverfasser: Zou, Peichao, Sui, Yiming, Zhan, Houchao, Wang, Chunyang, Xin, Huolin L, Cheng, Hui-Ming, Kang, Feiyu, Yang, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6056
container_issue 10
container_start_page 5986
container_title Chemical reviews
container_volume 121
creator Zou, Peichao
Sui, Yiming
Zhan, Houchao
Wang, Chunyang
Xin, Huolin L
Cheng, Hui-Ming
Kang, Feiyu
Yang, Cheng
description Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.
doi_str_mv 10.1021/acs.chemrev.0c01100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2514594017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535885071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhS1EVba0vwAJWeLSS5ZxHMfOESEolRYVAT1HjmMTr5x4sWOk_ff1slsOPfQ0Gs333ozmIXRGYEmgJJdSxaUa9Bj02xIUEAJwhBaElVDUooFjtACApijrmp2gLzGuc8tYyT-jE0pFTYDDAq0fvNuOPmwGfPPmXZqtn_C9VoOcbBwjllOPH_VLcvJ98jQHOesXqyP2Bq_sPNg0Zn6WDl9Nvtc4Tb0O-D652W6GbbQqT26tdn38ij4Z6aL-dqin6PftzfP1XbH69ePn9dWqkBVt5sKYEoQRvaKdIIZLqBmXnBpKdVfxstOUCVFlVlVMKsNVwzgXlEPXs4pRQU_R973vJvjXpOPcjjYq7ZyctE-xLRmpWFMB4Rm9-Add-xSmfF2mdnsYcJIpuqdU8DEGbdpNsKMM25ZAu4uizVG0hyjaQxRZdX7wTt2o-w_N399n4HIP7NQfe_9n-QfBb5ff</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535885071</pqid></control><display><type>article</type><title>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</title><source>ACS Publications</source><creator>Zou, Peichao ; Sui, Yiming ; Zhan, Houchao ; Wang, Chunyang ; Xin, Huolin L ; Cheng, Hui-Ming ; Kang, Feiyu ; Yang, Cheng</creator><creatorcontrib>Zou, Peichao ; Sui, Yiming ; Zhan, Houchao ; Wang, Chunyang ; Xin, Huolin L ; Cheng, Hui-Ming ; Kang, Feiyu ; Yang, Cheng</creatorcontrib><description>Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c01100</identifier><identifier>PMID: 33861070</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anodes ; Dendrites ; Electric fields ; Electrochemistry ; Electrode materials ; Electrolytes ; Evolution ; Lithium ; Metallurgy ; Metals ; Mosses ; Nucleation ; Plating ; Redox reactions ; Safety ; Solid electrolytes ; Stability ; Stress concentration ; Stress distribution ; Temperature distribution</subject><ispartof>Chemical reviews, 2021-05, Vol.121 (10), p.5986-6056</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society May 26, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</citedby><cites>FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</cites><orcidid>0000-0001-8461-3952 ; 0000-0003-2618-4787 ; 0000-0003-0148-7482 ; 0000-0002-5387-4241 ; 0000-0002-6521-868X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c01100$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c01100$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33861070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Peichao</creatorcontrib><creatorcontrib>Sui, Yiming</creatorcontrib><creatorcontrib>Zhan, Houchao</creatorcontrib><creatorcontrib>Wang, Chunyang</creatorcontrib><creatorcontrib>Xin, Huolin L</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><title>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.</description><subject>Anodes</subject><subject>Dendrites</subject><subject>Electric fields</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Evolution</subject><subject>Lithium</subject><subject>Metallurgy</subject><subject>Metals</subject><subject>Mosses</subject><subject>Nucleation</subject><subject>Plating</subject><subject>Redox reactions</subject><subject>Safety</subject><subject>Solid electrolytes</subject><subject>Stability</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Temperature distribution</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQhS1EVba0vwAJWeLSS5ZxHMfOESEolRYVAT1HjmMTr5x4sWOk_ff1slsOPfQ0Gs333ozmIXRGYEmgJJdSxaUa9Bj02xIUEAJwhBaElVDUooFjtACApijrmp2gLzGuc8tYyT-jE0pFTYDDAq0fvNuOPmwGfPPmXZqtn_C9VoOcbBwjllOPH_VLcvJ98jQHOesXqyP2Bq_sPNg0Zn6WDl9Nvtc4Tb0O-D652W6GbbQqT26tdn38ij4Z6aL-dqin6PftzfP1XbH69ePn9dWqkBVt5sKYEoQRvaKdIIZLqBmXnBpKdVfxstOUCVFlVlVMKsNVwzgXlEPXs4pRQU_R973vJvjXpOPcjjYq7ZyctE-xLRmpWFMB4Rm9-Add-xSmfF2mdnsYcJIpuqdU8DEGbdpNsKMM25ZAu4uizVG0hyjaQxRZdX7wTt2o-w_N399n4HIP7NQfe_9n-QfBb5ff</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Zou, Peichao</creator><creator>Sui, Yiming</creator><creator>Zhan, Houchao</creator><creator>Wang, Chunyang</creator><creator>Xin, Huolin L</creator><creator>Cheng, Hui-Ming</creator><creator>Kang, Feiyu</creator><creator>Yang, Cheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8461-3952</orcidid><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid><orcidid>https://orcid.org/0000-0003-0148-7482</orcidid><orcidid>https://orcid.org/0000-0002-5387-4241</orcidid><orcidid>https://orcid.org/0000-0002-6521-868X</orcidid></search><sort><creationdate>20210526</creationdate><title>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</title><author>Zou, Peichao ; Sui, Yiming ; Zhan, Houchao ; Wang, Chunyang ; Xin, Huolin L ; Cheng, Hui-Ming ; Kang, Feiyu ; Yang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-ff208f8dc3b81f7a0657a73f33eb472be35884a43c45acf7c95778370bd545383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Dendrites</topic><topic>Electric fields</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Evolution</topic><topic>Lithium</topic><topic>Metallurgy</topic><topic>Metals</topic><topic>Mosses</topic><topic>Nucleation</topic><topic>Plating</topic><topic>Redox reactions</topic><topic>Safety</topic><topic>Solid electrolytes</topic><topic>Stability</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Peichao</creatorcontrib><creatorcontrib>Sui, Yiming</creatorcontrib><creatorcontrib>Zhan, Houchao</creatorcontrib><creatorcontrib>Wang, Chunyang</creatorcontrib><creatorcontrib>Xin, Huolin L</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Peichao</au><au>Sui, Yiming</au><au>Zhan, Houchao</au><au>Wang, Chunyang</au><au>Xin, Huolin L</au><au>Cheng, Hui-Ming</au><au>Kang, Feiyu</au><au>Yang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2021-05-26</date><risdate>2021</risdate><volume>121</volume><issue>10</issue><spage>5986</spage><epage>6056</epage><pages>5986-6056</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material for next generation batteries owing to its high theoretical capacity and low redox reaction potential. However, the uncontrolled Li plating/stripping issue of Li metal anodes, associated with polymorphous Li formation, “dead Li” accumulation, poor Coulombic efficiency, inferior cyclic stability, and hazardous safety risks (such as explosion), remains as one major roadblock for their practical applications. In principle, polymorphous Li deposits on Li metal anodes includes smooth Li (film-like Li) and a group of irregularly patterned Li (e.g., whisker-like Li (Li whiskers), moss-like Li (Li mosses), tree-like Li (Li dendrites), and their combinations). The nucleation and growth of these Li polymorphs are dominantly dependent on multiphysical fields, involving the ionic concentration field, electric field, stress field, and temperature field, etc. This review provides a clear picture and in-depth discussion on the classification and initiation/growth mechanisms of polymorphous Li from the new perspective of multiphysical fields, particularly for irregular Li patterns. Specifically, we discuss the impact of multiphysical fields’ distribution and intensity on Li plating behavior as well as their connection with the electrochemical and metallurgical properties of Li metal and some other factors (e.g., electrolyte composition, solid electrolyte interphase (SEI) layer, and initial nuclei states). Accordingly, the studies on the progress for delaying/suppressing/redirecting irregular Li evolution to enhance the stability and safety performance of Li metal batteries are reviewed, which are also categorized based on the multiphysical fields. Finally, an overview of the existing challenges and the future development directions of metal anodes are summarized and prospected.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33861070</pmid><doi>10.1021/acs.chemrev.0c01100</doi><tpages>71</tpages><orcidid>https://orcid.org/0000-0001-8461-3952</orcidid><orcidid>https://orcid.org/0000-0003-2618-4787</orcidid><orcidid>https://orcid.org/0000-0003-0148-7482</orcidid><orcidid>https://orcid.org/0000-0002-5387-4241</orcidid><orcidid>https://orcid.org/0000-0002-6521-868X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2021-05, Vol.121 (10), p.5986-6056
issn 0009-2665
1520-6890
language eng
recordid cdi_proquest_miscellaneous_2514594017
source ACS Publications
subjects Anodes
Dendrites
Electric fields
Electrochemistry
Electrode materials
Electrolytes
Evolution
Lithium
Metallurgy
Metals
Mosses
Nucleation
Plating
Redox reactions
Safety
Solid electrolytes
Stability
Stress concentration
Stress distribution
Temperature distribution
title Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymorph%20Evolution%20Mechanisms%20and%20Regulation%20Strategies%20of%20Lithium%20Metal%20Anode%20under%20Multiphysical%20Fields&rft.jtitle=Chemical%20reviews&rft.au=Zou,%20Peichao&rft.date=2021-05-26&rft.volume=121&rft.issue=10&rft.spage=5986&rft.epage=6056&rft.pages=5986-6056&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c01100&rft_dat=%3Cproquest_cross%3E2535885071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535885071&rft_id=info:pmid/33861070&rfr_iscdi=true