The in vivo QTc core assay: An evaluation of QTc variability, detection sensitivity and implications for the improvement of conscious dog and non-human primate telemetry studies

The ICH S7B guideline describes the requirement to conduct an in vitro IKr (hERG) and in vivo QTc assay for human risk assessment of new drug products, but the guidance is devoid of recommendations on study execution or quality. In the absence of standard practice, multiple study designs and experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmacological and toxicological methods 2021-05, Vol.109, p.107067-107067, Article 107067
Hauptverfasser: Baublits, Joel, Vargas, Hugo M., Engwall, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107067
container_issue
container_start_page 107067
container_title Journal of pharmacological and toxicological methods
container_volume 109
creator Baublits, Joel
Vargas, Hugo M.
Engwall, Michael J.
description The ICH S7B guideline describes the requirement to conduct an in vitro IKr (hERG) and in vivo QTc assay for human risk assessment of new drug products, but the guidance is devoid of recommendations on study execution or quality. In the absence of standard practice, multiple study designs and experimental approaches have been utilized, especially with the nonclinical QTc assay. Since 2009, our approach to the in vivo QTc assay has been consistent for small molecules and yields reproducible and sensitive levels for QTc signal detection. Our database and experience indicate that nonrodent telemetry studies can achieve high sensitivity and a calculated metric of study power can be used to indicate study quality. Using a retrospective statistical power analysis of multiple studies (n = 14 dog; n = 6 NHP), the detection sensitivity for a specific study design (N = 8; double Latin square cross-over) was determined. The output of the power analysis is the minimal detectable effect at 80% power and a 95% probability level. The design provided an average sensitivity to detect a 4.7 (2.0%) and 6.5 (1.9%) msec QTcI change in dog and NHP, respectively. These findings suggest that this experimental approach has a consistent and reproducible sensitivity to enable a robust QTcI risk evaluation and can be used confidently to support an integrated nonclinical-clinical pro-arrhythmia risk assessment. The inclusion of power analysis (i.e., QTc sensitivity) data in a regulatory submission provides key information to critical stakeholders about the quality of the in vivo QTc assessment and its value for human safety testing.
doi_str_mv 10.1016/j.vascn.2021.107067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2514593785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1056871921001192</els_id><sourcerecordid>2514593785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5575a517220b6d14d35ea6531730c682f0501945ed583e05a6a665ea17a079423</originalsourceid><addsrcrecordid>eNp9kcuKFDEUhoMozjj6BIJk6cJqk8qtSnAxDDoKAyK04C6kk1NOmqqkTVIF_Vi-oenqGZeuEs75_nP7EXpNyYYSKt_vN4vJNmxa0tIaUUSqJ-iSdoo1vOt-Pq1_ImTTKdpfoBc57wkhrKf8ObpgrBNKUn6J_mzvAfuAF79E_H1rsY0JsMnZHD_g64BhMeNsio8Bx2EFFpO82fnRl-M77KCAXbMZQvbFLzWMTXDYT4fR21WZ8RATLqdG0yHFBSYI5VTO1pz1cc7YxV-rKsTQ3M-TCfiQ_GQK4AJj5Us64lxm5yG_RM8GM2Z49fBeoR-fP21vvjR3326_3lzfNZYTXhohlDCCqrYlO-kod0yAkYJRxYiVXTsQQWjPBTjRMSDCSCNlRagyRPW8ZVfo7bluHfn3DLnoyWcL42gC1JF1KygXPVOdqCg7ozbFnBMMep0-HTUl-uSV3uvVK33ySp-9qqo3Dw3m3QTun-bRnAp8PANQ11w8JF2vBcGC86leXbvo_9vgL4O1qMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514593785</pqid></control><display><type>article</type><title>The in vivo QTc core assay: An evaluation of QTc variability, detection sensitivity and implications for the improvement of conscious dog and non-human primate telemetry studies</title><source>Elsevier ScienceDirect Journals</source><creator>Baublits, Joel ; Vargas, Hugo M. ; Engwall, Michael J.</creator><creatorcontrib>Baublits, Joel ; Vargas, Hugo M. ; Engwall, Michael J.</creatorcontrib><description>The ICH S7B guideline describes the requirement to conduct an in vitro IKr (hERG) and in vivo QTc assay for human risk assessment of new drug products, but the guidance is devoid of recommendations on study execution or quality. In the absence of standard practice, multiple study designs and experimental approaches have been utilized, especially with the nonclinical QTc assay. Since 2009, our approach to the in vivo QTc assay has been consistent for small molecules and yields reproducible and sensitive levels for QTc signal detection. Our database and experience indicate that nonrodent telemetry studies can achieve high sensitivity and a calculated metric of study power can be used to indicate study quality. Using a retrospective statistical power analysis of multiple studies (n = 14 dog; n = 6 NHP), the detection sensitivity for a specific study design (N = 8; double Latin square cross-over) was determined. The output of the power analysis is the minimal detectable effect at 80% power and a 95% probability level. The design provided an average sensitivity to detect a 4.7 (2.0%) and 6.5 (1.9%) msec QTcI change in dog and NHP, respectively. These findings suggest that this experimental approach has a consistent and reproducible sensitivity to enable a robust QTcI risk evaluation and can be used confidently to support an integrated nonclinical-clinical pro-arrhythmia risk assessment. The inclusion of power analysis (i.e., QTc sensitivity) data in a regulatory submission provides key information to critical stakeholders about the quality of the in vivo QTc assessment and its value for human safety testing.</description><identifier>ISSN: 1056-8719</identifier><identifier>EISSN: 1873-488X</identifier><identifier>DOI: 10.1016/j.vascn.2021.107067</identifier><identifier>PMID: 33857614</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Dogs ; Methods ; Monkeys ; Power analysis ; QT prolongation ; S7B ; Safety pharmacology</subject><ispartof>Journal of pharmacological and toxicological methods, 2021-05, Vol.109, p.107067-107067, Article 107067</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5575a517220b6d14d35ea6531730c682f0501945ed583e05a6a665ea17a079423</citedby><cites>FETCH-LOGICAL-c404t-5575a517220b6d14d35ea6531730c682f0501945ed583e05a6a665ea17a079423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1056871921001192$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33857614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baublits, Joel</creatorcontrib><creatorcontrib>Vargas, Hugo M.</creatorcontrib><creatorcontrib>Engwall, Michael J.</creatorcontrib><title>The in vivo QTc core assay: An evaluation of QTc variability, detection sensitivity and implications for the improvement of conscious dog and non-human primate telemetry studies</title><title>Journal of pharmacological and toxicological methods</title><addtitle>J Pharmacol Toxicol Methods</addtitle><description>The ICH S7B guideline describes the requirement to conduct an in vitro IKr (hERG) and in vivo QTc assay for human risk assessment of new drug products, but the guidance is devoid of recommendations on study execution or quality. In the absence of standard practice, multiple study designs and experimental approaches have been utilized, especially with the nonclinical QTc assay. Since 2009, our approach to the in vivo QTc assay has been consistent for small molecules and yields reproducible and sensitive levels for QTc signal detection. Our database and experience indicate that nonrodent telemetry studies can achieve high sensitivity and a calculated metric of study power can be used to indicate study quality. Using a retrospective statistical power analysis of multiple studies (n = 14 dog; n = 6 NHP), the detection sensitivity for a specific study design (N = 8; double Latin square cross-over) was determined. The output of the power analysis is the minimal detectable effect at 80% power and a 95% probability level. The design provided an average sensitivity to detect a 4.7 (2.0%) and 6.5 (1.9%) msec QTcI change in dog and NHP, respectively. These findings suggest that this experimental approach has a consistent and reproducible sensitivity to enable a robust QTcI risk evaluation and can be used confidently to support an integrated nonclinical-clinical pro-arrhythmia risk assessment. The inclusion of power analysis (i.e., QTc sensitivity) data in a regulatory submission provides key information to critical stakeholders about the quality of the in vivo QTc assessment and its value for human safety testing.</description><subject>Dogs</subject><subject>Methods</subject><subject>Monkeys</subject><subject>Power analysis</subject><subject>QT prolongation</subject><subject>S7B</subject><subject>Safety pharmacology</subject><issn>1056-8719</issn><issn>1873-488X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcuKFDEUhoMozjj6BIJk6cJqk8qtSnAxDDoKAyK04C6kk1NOmqqkTVIF_Vi-oenqGZeuEs75_nP7EXpNyYYSKt_vN4vJNmxa0tIaUUSqJ-iSdoo1vOt-Pq1_ImTTKdpfoBc57wkhrKf8ObpgrBNKUn6J_mzvAfuAF79E_H1rsY0JsMnZHD_g64BhMeNsio8Bx2EFFpO82fnRl-M77KCAXbMZQvbFLzWMTXDYT4fR21WZ8RATLqdG0yHFBSYI5VTO1pz1cc7YxV-rKsTQ3M-TCfiQ_GQK4AJj5Us64lxm5yG_RM8GM2Z49fBeoR-fP21vvjR3326_3lzfNZYTXhohlDCCqrYlO-kod0yAkYJRxYiVXTsQQWjPBTjRMSDCSCNlRagyRPW8ZVfo7bluHfn3DLnoyWcL42gC1JF1KygXPVOdqCg7ozbFnBMMep0-HTUl-uSV3uvVK33ySp-9qqo3Dw3m3QTun-bRnAp8PANQ11w8JF2vBcGC86leXbvo_9vgL4O1qMU</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Baublits, Joel</creator><creator>Vargas, Hugo M.</creator><creator>Engwall, Michael J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210501</creationdate><title>The in vivo QTc core assay: An evaluation of QTc variability, detection sensitivity and implications for the improvement of conscious dog and non-human primate telemetry studies</title><author>Baublits, Joel ; Vargas, Hugo M. ; Engwall, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5575a517220b6d14d35ea6531730c682f0501945ed583e05a6a665ea17a079423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dogs</topic><topic>Methods</topic><topic>Monkeys</topic><topic>Power analysis</topic><topic>QT prolongation</topic><topic>S7B</topic><topic>Safety pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baublits, Joel</creatorcontrib><creatorcontrib>Vargas, Hugo M.</creatorcontrib><creatorcontrib>Engwall, Michael J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmacological and toxicological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baublits, Joel</au><au>Vargas, Hugo M.</au><au>Engwall, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vivo QTc core assay: An evaluation of QTc variability, detection sensitivity and implications for the improvement of conscious dog and non-human primate telemetry studies</atitle><jtitle>Journal of pharmacological and toxicological methods</jtitle><addtitle>J Pharmacol Toxicol Methods</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>109</volume><spage>107067</spage><epage>107067</epage><pages>107067-107067</pages><artnum>107067</artnum><issn>1056-8719</issn><eissn>1873-488X</eissn><abstract>The ICH S7B guideline describes the requirement to conduct an in vitro IKr (hERG) and in vivo QTc assay for human risk assessment of new drug products, but the guidance is devoid of recommendations on study execution or quality. In the absence of standard practice, multiple study designs and experimental approaches have been utilized, especially with the nonclinical QTc assay. Since 2009, our approach to the in vivo QTc assay has been consistent for small molecules and yields reproducible and sensitive levels for QTc signal detection. Our database and experience indicate that nonrodent telemetry studies can achieve high sensitivity and a calculated metric of study power can be used to indicate study quality. Using a retrospective statistical power analysis of multiple studies (n = 14 dog; n = 6 NHP), the detection sensitivity for a specific study design (N = 8; double Latin square cross-over) was determined. The output of the power analysis is the minimal detectable effect at 80% power and a 95% probability level. The design provided an average sensitivity to detect a 4.7 (2.0%) and 6.5 (1.9%) msec QTcI change in dog and NHP, respectively. These findings suggest that this experimental approach has a consistent and reproducible sensitivity to enable a robust QTcI risk evaluation and can be used confidently to support an integrated nonclinical-clinical pro-arrhythmia risk assessment. The inclusion of power analysis (i.e., QTc sensitivity) data in a regulatory submission provides key information to critical stakeholders about the quality of the in vivo QTc assessment and its value for human safety testing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33857614</pmid><doi>10.1016/j.vascn.2021.107067</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1056-8719
ispartof Journal of pharmacological and toxicological methods, 2021-05, Vol.109, p.107067-107067, Article 107067
issn 1056-8719
1873-488X
language eng
recordid cdi_proquest_miscellaneous_2514593785
source Elsevier ScienceDirect Journals
subjects Dogs
Methods
Monkeys
Power analysis
QT prolongation
S7B
Safety pharmacology
title The in vivo QTc core assay: An evaluation of QTc variability, detection sensitivity and implications for the improvement of conscious dog and non-human primate telemetry studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vivo%20QTc%20core%20assay:%20An%20evaluation%20of%20QTc%20variability,%20detection%20sensitivity%20and%20implications%20for%20the%20improvement%20of%20conscious%20dog%20and%20non-human%20primate%20telemetry%20studies&rft.jtitle=Journal%20of%20pharmacological%20and%20toxicological%20methods&rft.au=Baublits,%20Joel&rft.date=2021-05-01&rft.volume=109&rft.spage=107067&rft.epage=107067&rft.pages=107067-107067&rft.artnum=107067&rft.issn=1056-8719&rft.eissn=1873-488X&rft_id=info:doi/10.1016/j.vascn.2021.107067&rft_dat=%3Cproquest_cross%3E2514593785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514593785&rft_id=info:pmid/33857614&rft_els_id=S1056871921001192&rfr_iscdi=true