Contribution to symbolic analysis of deformable multi-body systems

The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1991-12, Vol.32 (8), p.1621-1635
Hauptverfasser: Fisette, P., Samin, J. Cl, Willems, P. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1635
container_issue 8
container_start_page 1621
container_title International journal for numerical methods in engineering
container_volume 32
creator Fisette, P.
Samin, J. Cl
Willems, P. Y.
description The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description).
doi_str_mv 10.1002/nme.1620320807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25144002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25144002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMmdAbCnnOHHiESpaQKUsfIyW454lgxODnQjy7wkqAjEx3fK8z929hBxTmFGA7KxtcEZ5BiyDCsodMqEgyhQyKHfJZAREWoiK7pODGJ8BKC2ATcjF3LddsHXfWd8mnU_i0NTeWZ2oVrkh2ph4k2zQ-NCo2mHS9K6zae03w4jGDpt4SPaMchGPvueUPCwu7-dX6epueT0_X6WaAZSpAU4NV0yMB3IOQhU1M1jxvNQq10hNjhvgXNc5ryqDNRotCoGUoq4EMsqm5HTrfQ3-rcfYycZGjc6pFn0fZVbQPB__HMHZFtTBxxjQyNdgGxUGSUF-VSXHquRvVWPg5NusolbOBNVqG39SuRC54F9escXercPhH6lc317-WZFus3bs7OMnq8KL5CUrC_m0Xsob_riii2Il1-wT8piJXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25144002</pqid></control><display><type>article</type><title>Contribution to symbolic analysis of deformable multi-body systems</title><source>Wiley Journals</source><creator>Fisette, P. ; Samin, J. Cl ; Willems, P. Y.</creator><creatorcontrib>Fisette, P. ; Samin, J. Cl ; Willems, P. Y.</creatorcontrib><description>The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description).</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620320807</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>International journal for numerical methods in engineering, 1991-12, Vol.32 (8), p.1621-1635</ispartof><rights>Copyright © 1991 John Wiley &amp; Sons, Ltd</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</citedby><cites>FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620320807$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620320807$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4994962$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisette, P.</creatorcontrib><creatorcontrib>Samin, J. Cl</creatorcontrib><creatorcontrib>Willems, P. Y.</creatorcontrib><title>Contribution to symbolic analysis of deformable multi-body systems</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description).</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMmdAbCnnOHHiESpaQKUsfIyW454lgxODnQjy7wkqAjEx3fK8z929hBxTmFGA7KxtcEZ5BiyDCsodMqEgyhQyKHfJZAREWoiK7pODGJ8BKC2ATcjF3LddsHXfWd8mnU_i0NTeWZ2oVrkh2ph4k2zQ-NCo2mHS9K6zae03w4jGDpt4SPaMchGPvueUPCwu7-dX6epueT0_X6WaAZSpAU4NV0yMB3IOQhU1M1jxvNQq10hNjhvgXNc5ryqDNRotCoGUoq4EMsqm5HTrfQ3-rcfYycZGjc6pFn0fZVbQPB__HMHZFtTBxxjQyNdgGxUGSUF-VSXHquRvVWPg5NusolbOBNVqG39SuRC54F9escXercPhH6lc317-WZFus3bs7OMnq8KL5CUrC_m0Xsob_riii2Il1-wT8piJXg</recordid><startdate>199112</startdate><enddate>199112</enddate><creator>Fisette, P.</creator><creator>Samin, J. Cl</creator><creator>Willems, P. Y.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>199112</creationdate><title>Contribution to symbolic analysis of deformable multi-body systems</title><author>Fisette, P. ; Samin, J. Cl ; Willems, P. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisette, P.</creatorcontrib><creatorcontrib>Samin, J. Cl</creatorcontrib><creatorcontrib>Willems, P. Y.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisette, P.</au><au>Samin, J. Cl</au><au>Willems, P. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution to symbolic analysis of deformable multi-body systems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1991-12</date><risdate>1991</risdate><volume>32</volume><issue>8</issue><spage>1621</spage><epage>1635</epage><pages>1621-1635</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description).</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1620320807</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1991-12, Vol.32 (8), p.1621-1635
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_25144002
source Wiley Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
title Contribution to symbolic analysis of deformable multi-body systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20to%20symbolic%20analysis%20of%20deformable%20multi-body%20systems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Fisette,%20P.&rft.date=1991-12&rft.volume=32&rft.issue=8&rft.spage=1621&rft.epage=1635&rft.pages=1621-1635&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1620320807&rft_dat=%3Cproquest_cross%3E25144002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25144002&rft_id=info:pmid/&rfr_iscdi=true