Contribution to symbolic analysis of deformable multi-body systems
The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 1991-12, Vol.32 (8), p.1621-1635 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1635 |
---|---|
container_issue | 8 |
container_start_page | 1621 |
container_title | International journal for numerical methods in engineering |
container_volume | 32 |
creator | Fisette, P. Samin, J. Cl Willems, P. Y. |
description | The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description). |
doi_str_mv | 10.1002/nme.1620320807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25144002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25144002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMmdAbCnnOHHiESpaQKUsfIyW454lgxODnQjy7wkqAjEx3fK8z929hBxTmFGA7KxtcEZ5BiyDCsodMqEgyhQyKHfJZAREWoiK7pODGJ8BKC2ATcjF3LddsHXfWd8mnU_i0NTeWZ2oVrkh2ph4k2zQ-NCo2mHS9K6zae03w4jGDpt4SPaMchGPvueUPCwu7-dX6epueT0_X6WaAZSpAU4NV0yMB3IOQhU1M1jxvNQq10hNjhvgXNc5ryqDNRotCoGUoq4EMsqm5HTrfQ3-rcfYycZGjc6pFn0fZVbQPB__HMHZFtTBxxjQyNdgGxUGSUF-VSXHquRvVWPg5NusolbOBNVqG39SuRC54F9escXercPhH6lc317-WZFus3bs7OMnq8KL5CUrC_m0Xsob_riii2Il1-wT8piJXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25144002</pqid></control><display><type>article</type><title>Contribution to symbolic analysis of deformable multi-body systems</title><source>Wiley Journals</source><creator>Fisette, P. ; Samin, J. Cl ; Willems, P. Y.</creator><creatorcontrib>Fisette, P. ; Samin, J. Cl ; Willems, P. Y.</creatorcontrib><description>The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description).</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620320807</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>International journal for numerical methods in engineering, 1991-12, Vol.32 (8), p.1621-1635</ispartof><rights>Copyright © 1991 John Wiley & Sons, Ltd</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</citedby><cites>FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620320807$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620320807$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4994962$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisette, P.</creatorcontrib><creatorcontrib>Samin, J. Cl</creatorcontrib><creatorcontrib>Willems, P. Y.</creatorcontrib><title>Contribution to symbolic analysis of deformable multi-body systems</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description).</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMmdAbCnnOHHiESpaQKUsfIyW454lgxODnQjy7wkqAjEx3fK8z929hBxTmFGA7KxtcEZ5BiyDCsodMqEgyhQyKHfJZAREWoiK7pODGJ8BKC2ATcjF3LddsHXfWd8mnU_i0NTeWZ2oVrkh2ph4k2zQ-NCo2mHS9K6zae03w4jGDpt4SPaMchGPvueUPCwu7-dX6epueT0_X6WaAZSpAU4NV0yMB3IOQhU1M1jxvNQq10hNjhvgXNc5ryqDNRotCoGUoq4EMsqm5HTrfQ3-rcfYycZGjc6pFn0fZVbQPB__HMHZFtTBxxjQyNdgGxUGSUF-VSXHquRvVWPg5NusolbOBNVqG39SuRC54F9escXercPhH6lc317-WZFus3bs7OMnq8KL5CUrC_m0Xsob_riii2Il1-wT8piJXg</recordid><startdate>199112</startdate><enddate>199112</enddate><creator>Fisette, P.</creator><creator>Samin, J. Cl</creator><creator>Willems, P. Y.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>199112</creationdate><title>Contribution to symbolic analysis of deformable multi-body systems</title><author>Fisette, P. ; Samin, J. Cl ; Willems, P. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3007-f061f6a390326609a5b3fe8647ca4ce1f4ed066cb4688febefc959e11ec89e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisette, P.</creatorcontrib><creatorcontrib>Samin, J. Cl</creatorcontrib><creatorcontrib>Willems, P. Y.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisette, P.</au><au>Samin, J. Cl</au><au>Willems, P. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution to symbolic analysis of deformable multi-body systems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1991-12</date><risdate>1991</risdate><volume>32</volume><issue>8</issue><spage>1621</spage><epage>1635</epage><pages>1621-1635</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The aim of this paper is to present the equations of motion of deformable multi‐body systems in a compact form which is suitable for symbolic generation. Particular attention is paid to obtaining the various equations corresponding to joint displacements and body deformations in a unified manner. A large number of common intermediate terms are identified and appropriately assembled in the final form of the equations; for the various applications, this simple consideration permits one to drastically save on the computational effort. This paper also presents the data which are necessary to completely formulate the problem when the body deformations are described by a linear elasticity model (obtained from a modal or finite element description).</abstract><cop>New York</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1620320807</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 1991-12, Vol.32 (8), p.1621-1635 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_25144002 |
source | Wiley Journals |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics |
title | Contribution to symbolic analysis of deformable multi-body systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20to%20symbolic%20analysis%20of%20deformable%20multi-body%20systems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Fisette,%20P.&rft.date=1991-12&rft.volume=32&rft.issue=8&rft.spage=1621&rft.epage=1635&rft.pages=1621-1635&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1620320807&rft_dat=%3Cproquest_cross%3E25144002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25144002&rft_id=info:pmid/&rfr_iscdi=true |