Cadmium zinc sulfide films and heterojunctions
Cadmium sulfide (CdS) and zinc sulfide (ZnS), direct gap semiconductors with room temperature band-gap energy of 2.42 and 3.66 eV, respectively, form a continuous series of solid solutions (Cd1−xZnxS). The band-gap energy of Cd1−xZnxS can be tailored in the range of the binary band gaps. In this wor...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1991-09, Vol.70 (5), p.2688-2693 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2693 |
---|---|
container_issue | 5 |
container_start_page | 2688 |
container_title | Journal of applied physics |
container_volume | 70 |
creator | CHU, T. L CHU, S. S BRITT, J FEREKIDES, C WU, C. Q |
description | Cadmium sulfide (CdS) and zinc sulfide (ZnS), direct gap semiconductors with room temperature band-gap energy of 2.42 and 3.66 eV, respectively, form a continuous series of solid solutions (Cd1−xZnxS). The band-gap energy of Cd1−xZnxS can be tailored in the range of the binary band gaps. In this work, polycrystalline films of Cd1−xZnxS have been deposited on glass, SnO2:F/glass, and ZnO:F/glass substrates by the reaction of dimethylcadmium (DMCd), diethlyzinc (DEZn), and propyl mercaptan (PM) in a hydrogen atmosphere. The deposition rate and properties of Cd1−xZnxS films depend on the substrate temperature and the composition and flow rate of the reaction mixture. The deposition rate of Cd1−xZnxS films has been measured at 375 and 425 °C as a function of the DMCd/DEZn molar ratio in the reaction mixture. Without intentional doping, the deposited films are of high lateral resistivity, and the resistivity increases with increasing ZnS concentration. The electrical resistivity of the deposited films can be reduced by using octyl chloride or trimethylaluminum as a dopant. The effects of DMCd/DEZn and (DMCd+DEZn)/PM molar ratios on the optical and electrical properties of Cd1−xZnxTe films have been investigated. Thin film heterojunctions have been prepared by the successive in situ metal organic chemical vapor deposition of Cd0.7Zn0.3S (Eg∼2.8 eV), an absorber, and the ohmic contact on a ZnO:F/glass substrate, and their electrical and photovoltaic properties characterized. |
doi_str_mv | 10.1063/1.349384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25121208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25121208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-64afbfeda02a3ffb4ac2fc1829e5380feed8ae7d9bb656aae48f144abeb4b35b3</originalsourceid><addsrcrecordid>eNqN0E1LAzEUheEgCtYq-BNmIeJmam6SmSZLKVaFghtdh5vMDabMR01mFvrrrbS4dnU2D2fxMnYNfAG8lvewkMpIrU7YDLg25bKq-CmbcS6g1GZpztlFzlvOAbQ0M7ZYYdPFqSu-Y--LPLUhNlSE2Ha5wL4pPmikNGyn3o9x6PMlOwvYZro67py9rx_fVs_l5vXpZfWwKb0SaixrhcEFapALlCE4hV4ED1oYqqTmgajRSMvGOFdXNSIpHUApdOSUk5WTc3Z7-N2l4XOiPNouZk9tiz0NU7aiAgGC6_9AqEUNe3h3gD4NOScKdpdih-nLAre_5SzYQ7k9vTl-YvbYhoS9j_nPq31Fo0D-ACsibU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25116261</pqid></control><display><type>article</type><title>Cadmium zinc sulfide films and heterojunctions</title><source>AIP Digital Archive</source><creator>CHU, T. L ; CHU, S. S ; BRITT, J ; FEREKIDES, C ; WU, C. Q</creator><creatorcontrib>CHU, T. L ; CHU, S. S ; BRITT, J ; FEREKIDES, C ; WU, C. Q</creatorcontrib><description>Cadmium sulfide (CdS) and zinc sulfide (ZnS), direct gap semiconductors with room temperature band-gap energy of 2.42 and 3.66 eV, respectively, form a continuous series of solid solutions (Cd1−xZnxS). The band-gap energy of Cd1−xZnxS can be tailored in the range of the binary band gaps. In this work, polycrystalline films of Cd1−xZnxS have been deposited on glass, SnO2:F/glass, and ZnO:F/glass substrates by the reaction of dimethylcadmium (DMCd), diethlyzinc (DEZn), and propyl mercaptan (PM) in a hydrogen atmosphere. The deposition rate and properties of Cd1−xZnxS films depend on the substrate temperature and the composition and flow rate of the reaction mixture. The deposition rate of Cd1−xZnxS films has been measured at 375 and 425 °C as a function of the DMCd/DEZn molar ratio in the reaction mixture. Without intentional doping, the deposited films are of high lateral resistivity, and the resistivity increases with increasing ZnS concentration. The electrical resistivity of the deposited films can be reduced by using octyl chloride or trimethylaluminum as a dopant. The effects of DMCd/DEZn and (DMCd+DEZn)/PM molar ratios on the optical and electrical properties of Cd1−xZnxTe films have been investigated. Thin film heterojunctions have been prepared by the successive in situ metal organic chemical vapor deposition of Cd0.7Zn0.3S (Eg∼2.8 eV), an absorber, and the ohmic contact on a ZnO:F/glass substrate, and their electrical and photovoltaic properties characterized.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.349384</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Exact sciences and technology ; Physics</subject><ispartof>Journal of applied physics, 1991-09, Vol.70 (5), p.2688-2693</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-64afbfeda02a3ffb4ac2fc1829e5380feed8ae7d9bb656aae48f144abeb4b35b3</citedby><cites>FETCH-LOGICAL-c424t-64afbfeda02a3ffb4ac2fc1829e5380feed8ae7d9bb656aae48f144abeb4b35b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4979941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHU, T. L</creatorcontrib><creatorcontrib>CHU, S. S</creatorcontrib><creatorcontrib>BRITT, J</creatorcontrib><creatorcontrib>FEREKIDES, C</creatorcontrib><creatorcontrib>WU, C. Q</creatorcontrib><title>Cadmium zinc sulfide films and heterojunctions</title><title>Journal of applied physics</title><description>Cadmium sulfide (CdS) and zinc sulfide (ZnS), direct gap semiconductors with room temperature band-gap energy of 2.42 and 3.66 eV, respectively, form a continuous series of solid solutions (Cd1−xZnxS). The band-gap energy of Cd1−xZnxS can be tailored in the range of the binary band gaps. In this work, polycrystalline films of Cd1−xZnxS have been deposited on glass, SnO2:F/glass, and ZnO:F/glass substrates by the reaction of dimethylcadmium (DMCd), diethlyzinc (DEZn), and propyl mercaptan (PM) in a hydrogen atmosphere. The deposition rate and properties of Cd1−xZnxS films depend on the substrate temperature and the composition and flow rate of the reaction mixture. The deposition rate of Cd1−xZnxS films has been measured at 375 and 425 °C as a function of the DMCd/DEZn molar ratio in the reaction mixture. Without intentional doping, the deposited films are of high lateral resistivity, and the resistivity increases with increasing ZnS concentration. The electrical resistivity of the deposited films can be reduced by using octyl chloride or trimethylaluminum as a dopant. The effects of DMCd/DEZn and (DMCd+DEZn)/PM molar ratios on the optical and electrical properties of Cd1−xZnxTe films have been investigated. Thin film heterojunctions have been prepared by the successive in situ metal organic chemical vapor deposition of Cd0.7Zn0.3S (Eg∼2.8 eV), an absorber, and the ohmic contact on a ZnO:F/glass substrate, and their electrical and photovoltaic properties characterized.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEUheEgCtYq-BNmIeJmam6SmSZLKVaFghtdh5vMDabMR01mFvrrrbS4dnU2D2fxMnYNfAG8lvewkMpIrU7YDLg25bKq-CmbcS6g1GZpztlFzlvOAbQ0M7ZYYdPFqSu-Y--LPLUhNlSE2Ha5wL4pPmikNGyn3o9x6PMlOwvYZro67py9rx_fVs_l5vXpZfWwKb0SaixrhcEFapALlCE4hV4ED1oYqqTmgajRSMvGOFdXNSIpHUApdOSUk5WTc3Z7-N2l4XOiPNouZk9tiz0NU7aiAgGC6_9AqEUNe3h3gD4NOScKdpdih-nLAre_5SzYQ7k9vTl-YvbYhoS9j_nPq31Fo0D-ACsibU8</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>CHU, T. L</creator><creator>CHU, S. S</creator><creator>BRITT, J</creator><creator>FEREKIDES, C</creator><creator>WU, C. Q</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QQ</scope><scope>JG9</scope></search><sort><creationdate>19910901</creationdate><title>Cadmium zinc sulfide films and heterojunctions</title><author>CHU, T. L ; CHU, S. S ; BRITT, J ; FEREKIDES, C ; WU, C. Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-64afbfeda02a3ffb4ac2fc1829e5380feed8ae7d9bb656aae48f144abeb4b35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHU, T. L</creatorcontrib><creatorcontrib>CHU, S. S</creatorcontrib><creatorcontrib>BRITT, J</creatorcontrib><creatorcontrib>FEREKIDES, C</creatorcontrib><creatorcontrib>WU, C. Q</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHU, T. L</au><au>CHU, S. S</au><au>BRITT, J</au><au>FEREKIDES, C</au><au>WU, C. Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadmium zinc sulfide films and heterojunctions</atitle><jtitle>Journal of applied physics</jtitle><date>1991-09-01</date><risdate>1991</risdate><volume>70</volume><issue>5</issue><spage>2688</spage><epage>2693</epage><pages>2688-2693</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Cadmium sulfide (CdS) and zinc sulfide (ZnS), direct gap semiconductors with room temperature band-gap energy of 2.42 and 3.66 eV, respectively, form a continuous series of solid solutions (Cd1−xZnxS). The band-gap energy of Cd1−xZnxS can be tailored in the range of the binary band gaps. In this work, polycrystalline films of Cd1−xZnxS have been deposited on glass, SnO2:F/glass, and ZnO:F/glass substrates by the reaction of dimethylcadmium (DMCd), diethlyzinc (DEZn), and propyl mercaptan (PM) in a hydrogen atmosphere. The deposition rate and properties of Cd1−xZnxS films depend on the substrate temperature and the composition and flow rate of the reaction mixture. The deposition rate of Cd1−xZnxS films has been measured at 375 and 425 °C as a function of the DMCd/DEZn molar ratio in the reaction mixture. Without intentional doping, the deposited films are of high lateral resistivity, and the resistivity increases with increasing ZnS concentration. The electrical resistivity of the deposited films can be reduced by using octyl chloride or trimethylaluminum as a dopant. The effects of DMCd/DEZn and (DMCd+DEZn)/PM molar ratios on the optical and electrical properties of Cd1−xZnxTe films have been investigated. Thin film heterojunctions have been prepared by the successive in situ metal organic chemical vapor deposition of Cd0.7Zn0.3S (Eg∼2.8 eV), an absorber, and the ohmic contact on a ZnO:F/glass substrate, and their electrical and photovoltaic properties characterized.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.349384</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 1991-09, Vol.70 (5), p.2688-2693 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_miscellaneous_25121208 |
source | AIP Digital Archive |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in interface structures Exact sciences and technology Physics |
title | Cadmium zinc sulfide films and heterojunctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadmium%20zinc%20sulfide%20films%20and%20heterojunctions&rft.jtitle=Journal%20of%20applied%20physics&rft.au=CHU,%20T.%20L&rft.date=1991-09-01&rft.volume=70&rft.issue=5&rft.spage=2688&rft.epage=2693&rft.pages=2688-2693&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.349384&rft_dat=%3Cproquest_cross%3E25121208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25116261&rft_id=info:pmid/&rfr_iscdi=true |