Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction

Discovery and optimization of new catalysts can be potentially accelerated by efficient data analysis using machine-learning (ML). In this paper, we record the process of searching for additives in the electrochemical deposition of Cu catalysts for CO2 reduction (CO2RR) using ML, which includes thre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-04, Vol.143 (15), p.5755-5762
Hauptverfasser: Guo, Ying, He, Xinru, Su, Yuming, Dai, Yiheng, Xie, Mingcan, Yang, Shuangli, Chen, Jiawei, Wang, Kun, Zhou, Da, Wang, Cheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5762
container_issue 15
container_start_page 5755
container_title Journal of the American Chemical Society
container_volume 143
creator Guo, Ying
He, Xinru
Su, Yuming
Dai, Yiheng
Xie, Mingcan
Yang, Shuangli
Chen, Jiawei
Wang, Kun
Zhou, Da
Wang, Cheng
description Discovery and optimization of new catalysts can be potentially accelerated by efficient data analysis using machine-learning (ML). In this paper, we record the process of searching for additives in the electrochemical deposition of Cu catalysts for CO2 reduction (CO2RR) using ML, which includes three iterative cycles: “experimental test; ML analysis; prediction and redesign”. Cu catalysts are known for CO2RR to obtain a range of products including C1 (CO, HCOOH, CH4, CH3OH) and C2+ (C2H4, C2H6, C2H5OH, C3H7OH). Subtle changes in morphology and surface structure of the catalysts caused by additives in catalyst preparation can lead to dramatic shifts in CO2RR selectivity. After several ML cycles, we obtained catalysts selective for CO, HCOOH, and C2+ products. This catalyst discovery process highlights the potential of ML to accelerate material development by efficiently extracting information from a limited number of experimental data.
doi_str_mv 10.1021/jacs.1c00339
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2511898557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511898557</sourcerecordid><originalsourceid>FETCH-LOGICAL-a151t-b1b83e6c581838f6243cd02d9552b3246e6a95437dbd8cd53b9367a294b1d4c03</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKdv_oA8-tKZmzRt-jiqTmEyEX0OaZJqZpfMJh3MX2-HA58OB8453PshdA1kBoTC7VrpOANNCGPVCZoApyTjQItTNCGE0KwUBTtHFzGuR5tTARP09az0p_M2W1rVe-c_ssXgjDX4zkUddrbfY-UNXm2T27gflVzwOLR4boxLbmcjdh6_9Har-rGL6wHXKqluH1PEbehxvaL41ZpBH4qX6KxVXbRXR52i94f7t_oxW64WT_V8mSngkLIGGsFsobkAwURb0JxpQ6ipOKcNo3lhC1XxnJWmMUIbzpqKFaWiVd6AyTVhU3Tzt7vtw_dgY5Kb8RnbdcrbMERJOYCoBOflf3QkJ9dh6P14mAQiDzzlgac88mS_uOVopA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511898557</pqid></control><display><type>article</type><title>Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction</title><source>ACS Publications</source><creator>Guo, Ying ; He, Xinru ; Su, Yuming ; Dai, Yiheng ; Xie, Mingcan ; Yang, Shuangli ; Chen, Jiawei ; Wang, Kun ; Zhou, Da ; Wang, Cheng</creator><creatorcontrib>Guo, Ying ; He, Xinru ; Su, Yuming ; Dai, Yiheng ; Xie, Mingcan ; Yang, Shuangli ; Chen, Jiawei ; Wang, Kun ; Zhou, Da ; Wang, Cheng</creatorcontrib><description>Discovery and optimization of new catalysts can be potentially accelerated by efficient data analysis using machine-learning (ML). In this paper, we record the process of searching for additives in the electrochemical deposition of Cu catalysts for CO2 reduction (CO2RR) using ML, which includes three iterative cycles: “experimental test; ML analysis; prediction and redesign”. Cu catalysts are known for CO2RR to obtain a range of products including C1 (CO, HCOOH, CH4, CH3OH) and C2+ (C2H4, C2H6, C2H5OH, C3H7OH). Subtle changes in morphology and surface structure of the catalysts caused by additives in catalyst preparation can lead to dramatic shifts in CO2RR selectivity. After several ML cycles, we obtained catalysts selective for CO, HCOOH, and C2+ products. This catalyst discovery process highlights the potential of ML to accelerate material development by efficiently extracting information from a limited number of experimental data.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c00339</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-04, Vol.143 (15), p.5755-5762</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7906-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c00339$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c00339$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Guo, Ying</creatorcontrib><creatorcontrib>He, Xinru</creatorcontrib><creatorcontrib>Su, Yuming</creatorcontrib><creatorcontrib>Dai, Yiheng</creatorcontrib><creatorcontrib>Xie, Mingcan</creatorcontrib><creatorcontrib>Yang, Shuangli</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Zhou, Da</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><title>Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Discovery and optimization of new catalysts can be potentially accelerated by efficient data analysis using machine-learning (ML). In this paper, we record the process of searching for additives in the electrochemical deposition of Cu catalysts for CO2 reduction (CO2RR) using ML, which includes three iterative cycles: “experimental test; ML analysis; prediction and redesign”. Cu catalysts are known for CO2RR to obtain a range of products including C1 (CO, HCOOH, CH4, CH3OH) and C2+ (C2H4, C2H6, C2H5OH, C3H7OH). Subtle changes in morphology and surface structure of the catalysts caused by additives in catalyst preparation can lead to dramatic shifts in CO2RR selectivity. After several ML cycles, we obtained catalysts selective for CO, HCOOH, and C2+ products. This catalyst discovery process highlights the potential of ML to accelerate material development by efficiently extracting information from a limited number of experimental data.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoOKdv_oA8-tKZmzRt-jiqTmEyEX0OaZJqZpfMJh3MX2-HA58OB8453PshdA1kBoTC7VrpOANNCGPVCZoApyTjQItTNCGE0KwUBTtHFzGuR5tTARP09az0p_M2W1rVe-c_ssXgjDX4zkUddrbfY-UNXm2T27gflVzwOLR4boxLbmcjdh6_9Har-rGL6wHXKqluH1PEbehxvaL41ZpBH4qX6KxVXbRXR52i94f7t_oxW64WT_V8mSngkLIGGsFsobkAwURb0JxpQ6ipOKcNo3lhC1XxnJWmMUIbzpqKFaWiVd6AyTVhU3Tzt7vtw_dgY5Kb8RnbdcrbMERJOYCoBOflf3QkJ9dh6P14mAQiDzzlgac88mS_uOVopA</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Guo, Ying</creator><creator>He, Xinru</creator><creator>Su, Yuming</creator><creator>Dai, Yiheng</creator><creator>Xie, Mingcan</creator><creator>Yang, Shuangli</creator><creator>Chen, Jiawei</creator><creator>Wang, Kun</creator><creator>Zhou, Da</creator><creator>Wang, Cheng</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7906-8061</orcidid></search><sort><creationdate>20210421</creationdate><title>Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction</title><author>Guo, Ying ; He, Xinru ; Su, Yuming ; Dai, Yiheng ; Xie, Mingcan ; Yang, Shuangli ; Chen, Jiawei ; Wang, Kun ; Zhou, Da ; Wang, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a151t-b1b83e6c581838f6243cd02d9552b3246e6a95437dbd8cd53b9367a294b1d4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Ying</creatorcontrib><creatorcontrib>He, Xinru</creatorcontrib><creatorcontrib>Su, Yuming</creatorcontrib><creatorcontrib>Dai, Yiheng</creatorcontrib><creatorcontrib>Xie, Mingcan</creatorcontrib><creatorcontrib>Yang, Shuangli</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Zhou, Da</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Ying</au><au>He, Xinru</au><au>Su, Yuming</au><au>Dai, Yiheng</au><au>Xie, Mingcan</au><au>Yang, Shuangli</au><au>Chen, Jiawei</au><au>Wang, Kun</au><au>Zhou, Da</au><au>Wang, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>143</volume><issue>15</issue><spage>5755</spage><epage>5762</epage><pages>5755-5762</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Discovery and optimization of new catalysts can be potentially accelerated by efficient data analysis using machine-learning (ML). In this paper, we record the process of searching for additives in the electrochemical deposition of Cu catalysts for CO2 reduction (CO2RR) using ML, which includes three iterative cycles: “experimental test; ML analysis; prediction and redesign”. Cu catalysts are known for CO2RR to obtain a range of products including C1 (CO, HCOOH, CH4, CH3OH) and C2+ (C2H4, C2H6, C2H5OH, C3H7OH). Subtle changes in morphology and surface structure of the catalysts caused by additives in catalyst preparation can lead to dramatic shifts in CO2RR selectivity. After several ML cycles, we obtained catalysts selective for CO, HCOOH, and C2+ products. This catalyst discovery process highlights the potential of ML to accelerate material development by efficiently extracting information from a limited number of experimental data.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.1c00339</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7906-8061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-04, Vol.143 (15), p.5755-5762
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2511898557
source ACS Publications
title Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-Learning-Guided%20Discovery%20and%20Optimization%20of%20Additives%20in%20Preparing%20Cu%20Catalysts%20for%20CO2%20Reduction&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Guo,%20Ying&rft.date=2021-04-21&rft.volume=143&rft.issue=15&rft.spage=5755&rft.epage=5762&rft.pages=5755-5762&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c00339&rft_dat=%3Cproquest_acs_j%3E2511898557%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511898557&rft_id=info:pmid/&rfr_iscdi=true