Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry
Background The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algor...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-04, Vol.16 (4), p.e0249873-e0249873, Article 0249873 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0249873 |
---|---|
container_issue | 4 |
container_start_page | e0249873 |
container_title | PloS one |
container_volume | 16 |
creator | Abad, Ricardo Collart, Orvil Ganesan, Prasanth Rogers, A. J. Alhusseini, Mahmood Rodrigo, Miguel Narayan, Sanjiv M. Rappel, Wouter-Jan |
description | Background
The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces.
Methods
We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps.
Results
Patients (59.4 +/- 12.7 yrs, 60% M) showed 1.7 +/- 0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1).
Conclusions
AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning. |
doi_str_mv | 10.1371/journal.pone.0249873 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2511247572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657925392</galeid><doaj_id>oai_doaj_org_article_543a7fe8006840118dda2ff7adcfda98</doaj_id><sourcerecordid>A657925392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b1e7827841e74b0c40900ec10c1f1ba1f1c170f3014977dbdbe8a8554d5edaf03</originalsourceid><addsrcrecordid>eNqNk--L0zAYx4so3nn6H4gOBFFkM2naJn0jHMMfg4MDPX0b0uTJltE2uySdnn-96daNVe7FEWgenny-3zRP8iTJS4xmmFD8cW0714p6trEtzFCalYySR8k5Lkk6LVJEHp_EZ8kz79cI5YQVxdPkjBBGCpQW54m9WTmAiTINtN7YaDhxIG3rg-tkiIlJsJOt8Z2ozV-YiOBMRLSpnKlrsQNE5Lb7cCNCANf6SYxl57agDool2AaCu3uePNGi9vBimC-Sn18-38y_Ta-uvy7ml1dTWZRpmFYYKEspy-KcVUhmqEQIJEYSa1yJ-JGYIk0QzkpKVaUqYILleaZyUEIjcpG83vtuauv5UCvP0xyjnOU474nFnlBWrPnGmUa4O26F4buEdUsuXDCyBp5nRFANDKGCZQhjppRItaZCSa1EyaLXp2G3rmpASWiDE_XIdLzSmhVf2i1niGSUZNHg3WDg7G0HPvDGeAmxxC3YbvffOM1oTtOIvvkPvf90A7UU8QCm1TbuK3tTflnktExzUvZes3uoOBQ0Jr4C0CbmR4L3I0FkAvwJS9F5zxc_vj-cvf41Zt-esCsQdVh5W3f9q_JjMNuD0lnvHehjkTHifV8cqsH7vuBDX0TZq9MLOooOjRCBD3vgN1RWe2mglXDEULx5UpICxwClvR17OD03Ydcdc9u1gfwDtC0reg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510585150</pqid></control><display><type>article</type><title>Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Abad, Ricardo ; Collart, Orvil ; Ganesan, Prasanth ; Rogers, A. J. ; Alhusseini, Mahmood ; Rodrigo, Miguel ; Narayan, Sanjiv M. ; Rappel, Wouter-Jan</creator><contributor>Tolkacheva, Elena G.</contributor><creatorcontrib>Abad, Ricardo ; Collart, Orvil ; Ganesan, Prasanth ; Rogers, A. J. ; Alhusseini, Mahmood ; Rodrigo, Miguel ; Narayan, Sanjiv M. ; Rappel, Wouter-Jan ; Tolkacheva, Elena G.</creatorcontrib><description>Background
The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces.
Methods
We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps.
Results
Patients (59.4 +/- 12.7 yrs, 60% M) showed 1.7 +/- 0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1).
Conclusions
AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0249873</identifier><identifier>PMID: 33836026</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Ablation ; Algorithms ; Arrhythmia ; Atria ; Atrial fibrillation ; Atrial Fibrillation - pathology ; Atrial Fibrillation - surgery ; Bandpass filters ; Baskets ; Biology and Life Sciences ; Cardiac arrhythmia ; Catheter Ablation ; Catheters ; Computer programs ; Data analysis ; Drafting software ; Editing ; Electric contacts ; Electrodes ; Electronic mail ; Electrophysiologic Techniques, Cardiac - methods ; Engineering and Technology ; Female ; Fibrillation ; Funding ; Humans ; Hypotheses ; Imaging, Three-Dimensional - methods ; Inclusions ; Male ; Mapping ; Medicine ; Medicine and Health Sciences ; Methodology ; Methods ; Middle Aged ; Morphology ; Multidisciplinary Sciences ; Physical Sciences ; Physics ; Physiological aspects ; Reconstruction ; Research and Analysis Methods ; Science & Technology ; Science & Technology - Other Topics ; Signal Processing, Computer-Assisted ; Software ; Visualization</subject><ispartof>PloS one, 2021-04, Vol.16 (4), p.e0249873-e0249873, Article 0249873</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Abad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Abad et al 2021 Abad et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000639361000023</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c692t-b1e7827841e74b0c40900ec10c1f1ba1f1c170f3014977dbdbe8a8554d5edaf03</citedby><cites>FETCH-LOGICAL-c692t-b1e7827841e74b0c40900ec10c1f1ba1f1c170f3014977dbdbe8a8554d5edaf03</cites><orcidid>0000-0002-1885-0690 ; 0000-0001-6585-534X ; 0000-0001-7552-5053 ; 0000-0003-3833-7197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034734/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034734/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2114,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33836026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tolkacheva, Elena G.</contributor><creatorcontrib>Abad, Ricardo</creatorcontrib><creatorcontrib>Collart, Orvil</creatorcontrib><creatorcontrib>Ganesan, Prasanth</creatorcontrib><creatorcontrib>Rogers, A. J.</creatorcontrib><creatorcontrib>Alhusseini, Mahmood</creatorcontrib><creatorcontrib>Rodrigo, Miguel</creatorcontrib><creatorcontrib>Narayan, Sanjiv M.</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><title>Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry</title><title>PloS one</title><addtitle>PLOS ONE</addtitle><addtitle>PLoS One</addtitle><description>Background
The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces.
Methods
We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps.
Results
Patients (59.4 +/- 12.7 yrs, 60% M) showed 1.7 +/- 0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1).
Conclusions
AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Atria</subject><subject>Atrial fibrillation</subject><subject>Atrial Fibrillation - pathology</subject><subject>Atrial Fibrillation - surgery</subject><subject>Bandpass filters</subject><subject>Baskets</subject><subject>Biology and Life Sciences</subject><subject>Cardiac arrhythmia</subject><subject>Catheter Ablation</subject><subject>Catheters</subject><subject>Computer programs</subject><subject>Data analysis</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Electric contacts</subject><subject>Electrodes</subject><subject>Electronic mail</subject><subject>Electrophysiologic Techniques, Cardiac - methods</subject><subject>Engineering and Technology</subject><subject>Female</subject><subject>Fibrillation</subject><subject>Funding</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Inclusions</subject><subject>Male</subject><subject>Mapping</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Morphology</subject><subject>Multidisciplinary Sciences</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Reconstruction</subject><subject>Research and Analysis Methods</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Visualization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk--L0zAYx4so3nn6H4gOBFFkM2naJn0jHMMfg4MDPX0b0uTJltE2uySdnn-96daNVe7FEWgenny-3zRP8iTJS4xmmFD8cW0714p6trEtzFCalYySR8k5Lkk6LVJEHp_EZ8kz79cI5YQVxdPkjBBGCpQW54m9WTmAiTINtN7YaDhxIG3rg-tkiIlJsJOt8Z2ozV-YiOBMRLSpnKlrsQNE5Lb7cCNCANf6SYxl57agDool2AaCu3uePNGi9vBimC-Sn18-38y_Ta-uvy7ml1dTWZRpmFYYKEspy-KcVUhmqEQIJEYSa1yJ-JGYIk0QzkpKVaUqYILleaZyUEIjcpG83vtuauv5UCvP0xyjnOU474nFnlBWrPnGmUa4O26F4buEdUsuXDCyBp5nRFANDKGCZQhjppRItaZCSa1EyaLXp2G3rmpASWiDE_XIdLzSmhVf2i1niGSUZNHg3WDg7G0HPvDGeAmxxC3YbvffOM1oTtOIvvkPvf90A7UU8QCm1TbuK3tTflnktExzUvZes3uoOBQ0Jr4C0CbmR4L3I0FkAvwJS9F5zxc_vj-cvf41Zt-esCsQdVh5W3f9q_JjMNuD0lnvHehjkTHifV8cqsH7vuBDX0TZq9MLOooOjRCBD3vgN1RWe2mglXDEULx5UpICxwClvR17OD03Ydcdc9u1gfwDtC0reg</recordid><startdate>20210409</startdate><enddate>20210409</enddate><creator>Abad, Ricardo</creator><creator>Collart, Orvil</creator><creator>Ganesan, Prasanth</creator><creator>Rogers, A. J.</creator><creator>Alhusseini, Mahmood</creator><creator>Rodrigo, Miguel</creator><creator>Narayan, Sanjiv M.</creator><creator>Rappel, Wouter-Jan</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1885-0690</orcidid><orcidid>https://orcid.org/0000-0001-6585-534X</orcidid><orcidid>https://orcid.org/0000-0001-7552-5053</orcidid><orcidid>https://orcid.org/0000-0003-3833-7197</orcidid></search><sort><creationdate>20210409</creationdate><title>Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry</title><author>Abad, Ricardo ; Collart, Orvil ; Ganesan, Prasanth ; Rogers, A. J. ; Alhusseini, Mahmood ; Rodrigo, Miguel ; Narayan, Sanjiv M. ; Rappel, Wouter-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b1e7827841e74b0c40900ec10c1f1ba1f1c170f3014977dbdbe8a8554d5edaf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Atria</topic><topic>Atrial fibrillation</topic><topic>Atrial Fibrillation - pathology</topic><topic>Atrial Fibrillation - surgery</topic><topic>Bandpass filters</topic><topic>Baskets</topic><topic>Biology and Life Sciences</topic><topic>Cardiac arrhythmia</topic><topic>Catheter Ablation</topic><topic>Catheters</topic><topic>Computer programs</topic><topic>Data analysis</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Electric contacts</topic><topic>Electrodes</topic><topic>Electronic mail</topic><topic>Electrophysiologic Techniques, Cardiac - methods</topic><topic>Engineering and Technology</topic><topic>Female</topic><topic>Fibrillation</topic><topic>Funding</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Inclusions</topic><topic>Male</topic><topic>Mapping</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Morphology</topic><topic>Multidisciplinary Sciences</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Reconstruction</topic><topic>Research and Analysis Methods</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abad, Ricardo</creatorcontrib><creatorcontrib>Collart, Orvil</creatorcontrib><creatorcontrib>Ganesan, Prasanth</creatorcontrib><creatorcontrib>Rogers, A. J.</creatorcontrib><creatorcontrib>Alhusseini, Mahmood</creatorcontrib><creatorcontrib>Rodrigo, Miguel</creatorcontrib><creatorcontrib>Narayan, Sanjiv M.</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abad, Ricardo</au><au>Collart, Orvil</au><au>Ganesan, Prasanth</au><au>Rogers, A. J.</au><au>Alhusseini, Mahmood</au><au>Rodrigo, Miguel</au><au>Narayan, Sanjiv M.</au><au>Rappel, Wouter-Jan</au><au>Tolkacheva, Elena G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry</atitle><jtitle>PloS one</jtitle><stitle>PLOS ONE</stitle><addtitle>PLoS One</addtitle><date>2021-04-09</date><risdate>2021</risdate><volume>16</volume><issue>4</issue><spage>e0249873</spage><epage>e0249873</epage><pages>e0249873-e0249873</pages><artnum>0249873</artnum><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Background
The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces.
Methods
We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps.
Results
Patients (59.4 +/- 12.7 yrs, 60% M) showed 1.7 +/- 0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1).
Conclusions
AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>33836026</pmid><doi>10.1371/journal.pone.0249873</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1885-0690</orcidid><orcidid>https://orcid.org/0000-0001-6585-534X</orcidid><orcidid>https://orcid.org/0000-0001-7552-5053</orcidid><orcidid>https://orcid.org/0000-0003-3833-7197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-04, Vol.16 (4), p.e0249873-e0249873, Article 0249873 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2511247572 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Ablation Algorithms Arrhythmia Atria Atrial fibrillation Atrial Fibrillation - pathology Atrial Fibrillation - surgery Bandpass filters Baskets Biology and Life Sciences Cardiac arrhythmia Catheter Ablation Catheters Computer programs Data analysis Drafting software Editing Electric contacts Electrodes Electronic mail Electrophysiologic Techniques, Cardiac - methods Engineering and Technology Female Fibrillation Funding Humans Hypotheses Imaging, Three-Dimensional - methods Inclusions Male Mapping Medicine Medicine and Health Sciences Methodology Methods Middle Aged Morphology Multidisciplinary Sciences Physical Sciences Physics Physiological aspects Reconstruction Research and Analysis Methods Science & Technology Science & Technology - Other Topics Signal Processing, Computer-Assisted Software Visualization |
title | Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20dimensional%20reconstruction%20to%20visualize%20atrial%20fibrillation%20activation%20patterns%20on%20curved%20atrial%20geometry&rft.jtitle=PloS%20one&rft.au=Abad,%20Ricardo&rft.date=2021-04-09&rft.volume=16&rft.issue=4&rft.spage=e0249873&rft.epage=e0249873&rft.pages=e0249873-e0249873&rft.artnum=0249873&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0249873&rft_dat=%3Cgale_proqu%3EA657925392%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510585150&rft_id=info:pmid/33836026&rft_galeid=A657925392&rft_doaj_id=oai_doaj_org_article_543a7fe8006840118dda2ff7adcfda98&rfr_iscdi=true |