Mechanistic Study of the N‑Quaternized Pyridoxal-Catalyzed Biomimetic Asymmetric Mannich Reaction: Insights into the Origins of Enantioselectivity and Diastereoselectivity

Density functional theory calculations have been performed to gain insights into the catalytic mechanism of the N-quaternized pyridoxal (i.e., 1a)-mediated biomimetic asymmetric Mannich reaction of tert-butyl glycinate 3 with N-diphenylphosphinyl imine 2a to give the diamino acid ester 4a in high yi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2021-05, Vol.86 (9), p.6592-6599
Hauptverfasser: Cui, Xianlu, Li, Qianqian, Yao, Lei, Ma, Yanshun, Zhang, Lixiong, Zhang, Chuanbao, Zhao, Lili
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6599
container_issue 9
container_start_page 6592
container_title Journal of organic chemistry
container_volume 86
creator Cui, Xianlu
Li, Qianqian
Yao, Lei
Ma, Yanshun
Zhang, Lixiong
Zhang, Chuanbao
Zhao, Lili
description Density functional theory calculations have been performed to gain insights into the catalytic mechanism of the N-quaternized pyridoxal (i.e., 1a)-mediated biomimetic asymmetric Mannich reaction of tert-butyl glycinate 3 with N-diphenylphosphinyl imine 2a to give the diamino acid ester 4a in high yield with excellent enantiomeric and diastereomeric selectivity (Science 2018, 360, 1438). The study reveals that the whole catalysis can be characterized via three stages: (i) the catalyst 1a reacts with the tert-butyl glycinate 3 to generate the active carbanion complex IM3. (ii) IM3 then reacts with the N-diphenylphosphinyl imine 2a giving the imine intermediate IM8. (iii) IM8 undergoes hydrolysis to give the final product anti-4a and regenerate the catalyst 1a for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible for experimental realization. The hydrolysis step in the stage III is predicted to be the rate-determining step during the whole catalytic cycle. Furthermore, the origins of the enantioselectivity and diastereoselectivity for the target reaction, as well as the deactivation of the catalyst 1b, are also discussed.
doi_str_mv 10.1021/acs.joc.1c00381
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2511241452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511241452</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-82b950f49ff09cd565eebdfb56499297f8104ab195a94c23b1c41ecf7b3a9ec53</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EotvCmRvyEQll6z9xds2tLKVUail_z9HEGXddJU6xnYpw4hX6ILxUn6RedkFc8MWjmd_3jUYfIc84m3Mm-CGYOL8azJwbxuSSPyAzrgQrKs3Kh2TGmBCFFJXcI_sxXrH8lFKPyZ6US8kWlZqRX-do1uBdTM7Qz2lsJzpYmtZI39_9vP04QsLg3Q9s6YcpuHb4Dl2xggTdtOm9dkPvetxoj-LU5yrk8hy8d2ZNPyGY5Ab_ip766C7XKVLn0_Db_SK4S-fjZtmxB5-xiB1m_MaliYJv6RsHMS_HfwdPyCMLXcSnu_-AfH17_GX1rji7ODldHZ0VIKVMxVI0WjFbamuZNq2qFGLT2kZVpdZCL-ySsxIarhXo0gjZcFNyNHbRSNBolDwgL7a-12H4NmJMde-iwa4Dj8MYa6E4FyUvlcjo4RY1YYgxoK2vg-shTDVn9SajOmdU54zqXUZZ8XxnPjY9tn_5P6Fk4OUW2CrH4POt_7W7B_aeopY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511241452</pqid></control><display><type>article</type><title>Mechanistic Study of the N‑Quaternized Pyridoxal-Catalyzed Biomimetic Asymmetric Mannich Reaction: Insights into the Origins of Enantioselectivity and Diastereoselectivity</title><source>American Chemical Society Journals</source><creator>Cui, Xianlu ; Li, Qianqian ; Yao, Lei ; Ma, Yanshun ; Zhang, Lixiong ; Zhang, Chuanbao ; Zhao, Lili</creator><creatorcontrib>Cui, Xianlu ; Li, Qianqian ; Yao, Lei ; Ma, Yanshun ; Zhang, Lixiong ; Zhang, Chuanbao ; Zhao, Lili</creatorcontrib><description>Density functional theory calculations have been performed to gain insights into the catalytic mechanism of the N-quaternized pyridoxal (i.e., 1a)-mediated biomimetic asymmetric Mannich reaction of tert-butyl glycinate 3 with N-diphenylphosphinyl imine 2a to give the diamino acid ester 4a in high yield with excellent enantiomeric and diastereomeric selectivity (Science 2018, 360, 1438). The study reveals that the whole catalysis can be characterized via three stages: (i) the catalyst 1a reacts with the tert-butyl glycinate 3 to generate the active carbanion complex IM3. (ii) IM3 then reacts with the N-diphenylphosphinyl imine 2a giving the imine intermediate IM8. (iii) IM8 undergoes hydrolysis to give the final product anti-4a and regenerate the catalyst 1a for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible for experimental realization. The hydrolysis step in the stage III is predicted to be the rate-determining step during the whole catalytic cycle. Furthermore, the origins of the enantioselectivity and diastereoselectivity for the target reaction, as well as the deactivation of the catalyst 1b, are also discussed.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.1c00381</identifier><identifier>PMID: 33830765</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of organic chemistry, 2021-05, Vol.86 (9), p.6592-6599</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-82b950f49ff09cd565eebdfb56499297f8104ab195a94c23b1c41ecf7b3a9ec53</citedby><cites>FETCH-LOGICAL-a333t-82b950f49ff09cd565eebdfb56499297f8104ab195a94c23b1c41ecf7b3a9ec53</cites><orcidid>0000-0003-2580-6919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.1c00381$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.1c00381$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33830765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Xianlu</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Yao, Lei</creatorcontrib><creatorcontrib>Ma, Yanshun</creatorcontrib><creatorcontrib>Zhang, Lixiong</creatorcontrib><creatorcontrib>Zhang, Chuanbao</creatorcontrib><creatorcontrib>Zhao, Lili</creatorcontrib><title>Mechanistic Study of the N‑Quaternized Pyridoxal-Catalyzed Biomimetic Asymmetric Mannich Reaction: Insights into the Origins of Enantioselectivity and Diastereoselectivity</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>Density functional theory calculations have been performed to gain insights into the catalytic mechanism of the N-quaternized pyridoxal (i.e., 1a)-mediated biomimetic asymmetric Mannich reaction of tert-butyl glycinate 3 with N-diphenylphosphinyl imine 2a to give the diamino acid ester 4a in high yield with excellent enantiomeric and diastereomeric selectivity (Science 2018, 360, 1438). The study reveals that the whole catalysis can be characterized via three stages: (i) the catalyst 1a reacts with the tert-butyl glycinate 3 to generate the active carbanion complex IM3. (ii) IM3 then reacts with the N-diphenylphosphinyl imine 2a giving the imine intermediate IM8. (iii) IM8 undergoes hydrolysis to give the final product anti-4a and regenerate the catalyst 1a for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible for experimental realization. The hydrolysis step in the stage III is predicted to be the rate-determining step during the whole catalytic cycle. Furthermore, the origins of the enantioselectivity and diastereoselectivity for the target reaction, as well as the deactivation of the catalyst 1b, are also discussed.</description><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi0EotvCmRvyEQll6z9xds2tLKVUail_z9HEGXddJU6xnYpw4hX6ILxUn6RedkFc8MWjmd_3jUYfIc84m3Mm-CGYOL8azJwbxuSSPyAzrgQrKs3Kh2TGmBCFFJXcI_sxXrH8lFKPyZ6US8kWlZqRX-do1uBdTM7Qz2lsJzpYmtZI39_9vP04QsLg3Q9s6YcpuHb4Dl2xggTdtOm9dkPvetxoj-LU5yrk8hy8d2ZNPyGY5Ab_ip766C7XKVLn0_Db_SK4S-fjZtmxB5-xiB1m_MaliYJv6RsHMS_HfwdPyCMLXcSnu_-AfH17_GX1rji7ODldHZ0VIKVMxVI0WjFbamuZNq2qFGLT2kZVpdZCL-ySsxIarhXo0gjZcFNyNHbRSNBolDwgL7a-12H4NmJMde-iwa4Dj8MYa6E4FyUvlcjo4RY1YYgxoK2vg-shTDVn9SajOmdU54zqXUZZ8XxnPjY9tn_5P6Fk4OUW2CrH4POt_7W7B_aeopY</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Cui, Xianlu</creator><creator>Li, Qianqian</creator><creator>Yao, Lei</creator><creator>Ma, Yanshun</creator><creator>Zhang, Lixiong</creator><creator>Zhang, Chuanbao</creator><creator>Zhao, Lili</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2580-6919</orcidid></search><sort><creationdate>20210507</creationdate><title>Mechanistic Study of the N‑Quaternized Pyridoxal-Catalyzed Biomimetic Asymmetric Mannich Reaction: Insights into the Origins of Enantioselectivity and Diastereoselectivity</title><author>Cui, Xianlu ; Li, Qianqian ; Yao, Lei ; Ma, Yanshun ; Zhang, Lixiong ; Zhang, Chuanbao ; Zhao, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-82b950f49ff09cd565eebdfb56499297f8104ab195a94c23b1c41ecf7b3a9ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xianlu</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Yao, Lei</creatorcontrib><creatorcontrib>Ma, Yanshun</creatorcontrib><creatorcontrib>Zhang, Lixiong</creatorcontrib><creatorcontrib>Zhang, Chuanbao</creatorcontrib><creatorcontrib>Zhao, Lili</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Xianlu</au><au>Li, Qianqian</au><au>Yao, Lei</au><au>Ma, Yanshun</au><au>Zhang, Lixiong</au><au>Zhang, Chuanbao</au><au>Zhao, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of the N‑Quaternized Pyridoxal-Catalyzed Biomimetic Asymmetric Mannich Reaction: Insights into the Origins of Enantioselectivity and Diastereoselectivity</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>86</volume><issue>9</issue><spage>6592</spage><epage>6599</epage><pages>6592-6599</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>Density functional theory calculations have been performed to gain insights into the catalytic mechanism of the N-quaternized pyridoxal (i.e., 1a)-mediated biomimetic asymmetric Mannich reaction of tert-butyl glycinate 3 with N-diphenylphosphinyl imine 2a to give the diamino acid ester 4a in high yield with excellent enantiomeric and diastereomeric selectivity (Science 2018, 360, 1438). The study reveals that the whole catalysis can be characterized via three stages: (i) the catalyst 1a reacts with the tert-butyl glycinate 3 to generate the active carbanion complex IM3. (ii) IM3 then reacts with the N-diphenylphosphinyl imine 2a giving the imine intermediate IM8. (iii) IM8 undergoes hydrolysis to give the final product anti-4a and regenerate the catalyst 1a for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible for experimental realization. The hydrolysis step in the stage III is predicted to be the rate-determining step during the whole catalytic cycle. Furthermore, the origins of the enantioselectivity and diastereoselectivity for the target reaction, as well as the deactivation of the catalyst 1b, are also discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33830765</pmid><doi>10.1021/acs.joc.1c00381</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2580-6919</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2021-05, Vol.86 (9), p.6592-6599
issn 0022-3263
1520-6904
language eng
recordid cdi_proquest_miscellaneous_2511241452
source American Chemical Society Journals
title Mechanistic Study of the N‑Quaternized Pyridoxal-Catalyzed Biomimetic Asymmetric Mannich Reaction: Insights into the Origins of Enantioselectivity and Diastereoselectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20the%20N%E2%80%91Quaternized%20Pyridoxal-Catalyzed%20Biomimetic%20Asymmetric%20Mannich%20Reaction:%20Insights%20into%20the%20Origins%20of%20Enantioselectivity%20and%20Diastereoselectivity&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Cui,%20Xianlu&rft.date=2021-05-07&rft.volume=86&rft.issue=9&rft.spage=6592&rft.epage=6599&rft.pages=6592-6599&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.1c00381&rft_dat=%3Cproquest_cross%3E2511241452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511241452&rft_id=info:pmid/33830765&rfr_iscdi=true