First report of apple rubbery wood virus 1 in apple in China
More than 30 viral and subviral pathogens infect apple (Malus domestica, an important fruit crop in China) trees and rootstocks, posing a threat to its production. With advances in diagnostic technologies, new viruses including apple rubbery wood virus 1 (ARWV-1), apple rubbery wood virus 2 (ARWV-2)...
Gespeichert in:
Veröffentlicht in: | Plant disease 2021-11, Vol.105 (11) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Plant disease |
container_volume | 105 |
creator | Hu, Guojun Dong, Yafeng Zhang, Zunping Fan, Xudong Ren, Fang Lu, Xingkai |
description | More than 30 viral and subviral pathogens infect apple (Malus domestica, an important fruit crop in China) trees and rootstocks, posing a threat to its production. With advances in diagnostic technologies, new viruses including apple rubbery wood virus 1 (ARWV-1), apple rubbery wood virus 2 (ARWV-2), apple luteovirus 1 (ALV), and citrus virus A (CiVA) have been detected (Beatriz et al. 2018; Rott et al. 2018; Hu et al. 2021). ARWV-1 (family Phenuiviridae) is a negative-sense single-stranded RNA virus with three RNA segments (large [L], medium [M], and small [S]). It causes apple rubbery wood disease (Rott et al. 2018) and is found in apple rootstocks, causing leaf yellowing and mottle symptoms in Korea (Lim et al. 2018). To determine virus prevalence in apple trees in China, 200 apple leaf and shoot samples were collected from orchards in Hebei (n = 26), Liaoning (n = 40), Shandong (n = 100), Yunnan (n = 25), Shanxi (n = 4) and Inner Mongolia (5) in 2020. Total RNA was extracted from the shoot phloem or leaf tissues (Hu et al., 2015) and subjected to reverse transcription (RT)-PCR to detect apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple necrotic mosaic virus (ApNMV), apple scar skin viroid (ASSVd), ARWV-2, ARWV-1, ALVand CiVA using primers specific to respective viruses (Supplementary Table 1). The prevalence of ACLSV, ASPV, ASGV, ApNMV, ASSVd, ARWV-2, ARWV-1, ALV and CiVA was found to be 75.5%, 85.5%, 86.0%, 43.0%, 4.0%, 48.5%, 10.5%, 0% and 0%, respectively (Supplementary Table 2). Among the 21 positive samples for ARWV-1, three, five and 13 samples were from Hebei, Liaoning and Shandong, respectively. Five ARWV-1-positive samples (cultivars Xinhongjiangjun, Xiangfu-1, Xiangfu-2 and Tianhong) showed leaf mosaic symptoms. To confirm the RT-PCR assay, the projected ARWV-1 amplicons from cvs. Xiangfu-1 and Tianhong were cloned into the pMD18-T vector (Takara, Dalian, China), and three clones of each sample were sequenced. BLASTn analyses demonstrated that the sequences (accession nos. MW507810-MW507811) shared 96.9%-98.9% identity withARWV-1 sequences (MH714536, MF062127, and MF062138) in GenBank. An lncRNA library was prepared for high-throughput sequencing (HTS) with the Illumina HiSeq platform using Xiangfu-1 RNA. A total of 71,613,294 reads were obtained. De novo assembly of the reads revealed 135 viral sequence contigs of ACLSV, ASGV, ASPV, ApNMV, ARWV-1, and ARWV-2. The sequences of co |
doi_str_mv | 10.1094/pdis-01-21-0175-pdn |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2511241006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511241006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-3003934aede2c385fac462a3d819a34332126d374aa97a805af62bf6cf2d9bcd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk5_gSC59Kaak5N-BLyR6XQwVFCvQ9okWOmamrTK_r0dm96cD973PQceQs6BXQGT4rozdUwYJBzGmqdJZ9oDMgUpMMkzyQ_JlIEcZQn5hJzE-MkYEyIrjskEsUBRpOmU3CzqEHsabOdDT72juusaS8NQljZs6I_3hn7XYYgUaN3u1XGYf9StPiVHTjfRnu37jLwv7t_mj8nq-WE5v10lFebQJ8gYShTaGssrLFKnK5FxjaYAqVEgcuCZwVxoLXNdsFS7jJcuqxw3sqwMzsjl7m4X_NdgY6_Wdaxs0-jW-iEqngJwAYxloxV31ir4GIN1qgv1WoeNAqa22NTL3fJVMVAc1BbbuD-NqYv9g6FcW_Of-eOEv6QuaJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511241006</pqid></control><display><type>article</type><title>First report of apple rubbery wood virus 1 in apple in China</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>American Phytopathological Society Journal Back Issues</source><creator>Hu, Guojun ; Dong, Yafeng ; Zhang, Zunping ; Fan, Xudong ; Ren, Fang ; Lu, Xingkai</creator><creatorcontrib>Hu, Guojun ; Dong, Yafeng ; Zhang, Zunping ; Fan, Xudong ; Ren, Fang ; Lu, Xingkai</creatorcontrib><description>More than 30 viral and subviral pathogens infect apple (Malus domestica, an important fruit crop in China) trees and rootstocks, posing a threat to its production. With advances in diagnostic technologies, new viruses including apple rubbery wood virus 1 (ARWV-1), apple rubbery wood virus 2 (ARWV-2), apple luteovirus 1 (ALV), and citrus virus A (CiVA) have been detected (Beatriz et al. 2018; Rott et al. 2018; Hu et al. 2021). ARWV-1 (family Phenuiviridae) is a negative-sense single-stranded RNA virus with three RNA segments (large [L], medium [M], and small [S]). It causes apple rubbery wood disease (Rott et al. 2018) and is found in apple rootstocks, causing leaf yellowing and mottle symptoms in Korea (Lim et al. 2018). To determine virus prevalence in apple trees in China, 200 apple leaf and shoot samples were collected from orchards in Hebei (n = 26), Liaoning (n = 40), Shandong (n = 100), Yunnan (n = 25), Shanxi (n = 4) and Inner Mongolia (5) in 2020. Total RNA was extracted from the shoot phloem or leaf tissues (Hu et al., 2015) and subjected to reverse transcription (RT)-PCR to detect apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple necrotic mosaic virus (ApNMV), apple scar skin viroid (ASSVd), ARWV-2, ARWV-1, ALVand CiVA using primers specific to respective viruses (Supplementary Table 1). The prevalence of ACLSV, ASPV, ASGV, ApNMV, ASSVd, ARWV-2, ARWV-1, ALV and CiVA was found to be 75.5%, 85.5%, 86.0%, 43.0%, 4.0%, 48.5%, 10.5%, 0% and 0%, respectively (Supplementary Table 2). Among the 21 positive samples for ARWV-1, three, five and 13 samples were from Hebei, Liaoning and Shandong, respectively. Five ARWV-1-positive samples (cultivars Xinhongjiangjun, Xiangfu-1, Xiangfu-2 and Tianhong) showed leaf mosaic symptoms. To confirm the RT-PCR assay, the projected ARWV-1 amplicons from cvs. Xiangfu-1 and Tianhong were cloned into the pMD18-T vector (Takara, Dalian, China), and three clones of each sample were sequenced. BLASTn analyses demonstrated that the sequences (accession nos. MW507810-MW507811) shared 96.9%-98.9% identity withARWV-1 sequences (MH714536, MF062127, and MF062138) in GenBank. An lncRNA library was prepared for high-throughput sequencing (HTS) with the Illumina HiSeq platform using Xiangfu-1 RNA. A total of 71,613,294 reads were obtained. De novo assembly of the reads revealed 135 viral sequence contigs of ACLSV, ASGV, ASPV, ApNMV, ARWV-1, and ARWV-2. The sequences of contig-100_88981 (302 nt) and contig-100_25701 (834 nt) (accession nos. MW507821 and MW507820) matched those of segment S from ARWV-1, whereas the sequences of contig-100_6542 (1,660 nt) and contig-100_27 (7,364 nt) (accession nos. MW507819 and MW507818) matched those of segments M and L, respectively. To confirm the HTS results, fragments of segments L (744 bp), M (747 bp), and S (554 bp) from Xiangfu-1 and Tianhong were amplified (Supplementary Table 1) and sequenced. The sequences (accession nos. MW507812-MW507817) showed 94.8%-99.9% nucleotide identity with the corresponding segments of ARWV-1. Co-infection of ARWV-1 with ApNMV and/or ARWV-2 was confirmed in 17/21 ARWV-1-positive samples. The prevalence of ARWV-1/ApNMV, ARWV-1/ARWV-2, and ARWV-1/ApNMV/ARWV-2 infections was 61.9%, 71.4%, and 52.4%, respectively. To our knowledge, this is the first report of ARWV-1 infecting apple trees in China. Further research is needed to determine whether and how ARWV-1 affects apple yield and quality.</description><identifier>ISSN: 0191-2917</identifier><identifier>EISSN: 1943-7692</identifier><identifier>DOI: 10.1094/pdis-01-21-0175-pdn</identifier><identifier>PMID: 33834855</identifier><language>eng</language><publisher>United States</publisher><ispartof>Plant disease, 2021-11, Vol.105 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-3003934aede2c385fac462a3d819a34332126d374aa97a805af62bf6cf2d9bcd3</citedby><cites>FETCH-LOGICAL-c371t-3003934aede2c385fac462a3d819a34332126d374aa97a805af62bf6cf2d9bcd3</cites><orcidid>0000-0001-7989-6441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3724,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33834855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Guojun</creatorcontrib><creatorcontrib>Dong, Yafeng</creatorcontrib><creatorcontrib>Zhang, Zunping</creatorcontrib><creatorcontrib>Fan, Xudong</creatorcontrib><creatorcontrib>Ren, Fang</creatorcontrib><creatorcontrib>Lu, Xingkai</creatorcontrib><title>First report of apple rubbery wood virus 1 in apple in China</title><title>Plant disease</title><addtitle>Plant Dis</addtitle><description>More than 30 viral and subviral pathogens infect apple (Malus domestica, an important fruit crop in China) trees and rootstocks, posing a threat to its production. With advances in diagnostic technologies, new viruses including apple rubbery wood virus 1 (ARWV-1), apple rubbery wood virus 2 (ARWV-2), apple luteovirus 1 (ALV), and citrus virus A (CiVA) have been detected (Beatriz et al. 2018; Rott et al. 2018; Hu et al. 2021). ARWV-1 (family Phenuiviridae) is a negative-sense single-stranded RNA virus with three RNA segments (large [L], medium [M], and small [S]). It causes apple rubbery wood disease (Rott et al. 2018) and is found in apple rootstocks, causing leaf yellowing and mottle symptoms in Korea (Lim et al. 2018). To determine virus prevalence in apple trees in China, 200 apple leaf and shoot samples were collected from orchards in Hebei (n = 26), Liaoning (n = 40), Shandong (n = 100), Yunnan (n = 25), Shanxi (n = 4) and Inner Mongolia (5) in 2020. Total RNA was extracted from the shoot phloem or leaf tissues (Hu et al., 2015) and subjected to reverse transcription (RT)-PCR to detect apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple necrotic mosaic virus (ApNMV), apple scar skin viroid (ASSVd), ARWV-2, ARWV-1, ALVand CiVA using primers specific to respective viruses (Supplementary Table 1). The prevalence of ACLSV, ASPV, ASGV, ApNMV, ASSVd, ARWV-2, ARWV-1, ALV and CiVA was found to be 75.5%, 85.5%, 86.0%, 43.0%, 4.0%, 48.5%, 10.5%, 0% and 0%, respectively (Supplementary Table 2). Among the 21 positive samples for ARWV-1, three, five and 13 samples were from Hebei, Liaoning and Shandong, respectively. Five ARWV-1-positive samples (cultivars Xinhongjiangjun, Xiangfu-1, Xiangfu-2 and Tianhong) showed leaf mosaic symptoms. To confirm the RT-PCR assay, the projected ARWV-1 amplicons from cvs. Xiangfu-1 and Tianhong were cloned into the pMD18-T vector (Takara, Dalian, China), and three clones of each sample were sequenced. BLASTn analyses demonstrated that the sequences (accession nos. MW507810-MW507811) shared 96.9%-98.9% identity withARWV-1 sequences (MH714536, MF062127, and MF062138) in GenBank. An lncRNA library was prepared for high-throughput sequencing (HTS) with the Illumina HiSeq platform using Xiangfu-1 RNA. A total of 71,613,294 reads were obtained. De novo assembly of the reads revealed 135 viral sequence contigs of ACLSV, ASGV, ASPV, ApNMV, ARWV-1, and ARWV-2. The sequences of contig-100_88981 (302 nt) and contig-100_25701 (834 nt) (accession nos. MW507821 and MW507820) matched those of segment S from ARWV-1, whereas the sequences of contig-100_6542 (1,660 nt) and contig-100_27 (7,364 nt) (accession nos. MW507819 and MW507818) matched those of segments M and L, respectively. To confirm the HTS results, fragments of segments L (744 bp), M (747 bp), and S (554 bp) from Xiangfu-1 and Tianhong were amplified (Supplementary Table 1) and sequenced. The sequences (accession nos. MW507812-MW507817) showed 94.8%-99.9% nucleotide identity with the corresponding segments of ARWV-1. Co-infection of ARWV-1 with ApNMV and/or ARWV-2 was confirmed in 17/21 ARWV-1-positive samples. The prevalence of ARWV-1/ApNMV, ARWV-1/ARWV-2, and ARWV-1/ApNMV/ARWV-2 infections was 61.9%, 71.4%, and 52.4%, respectively. To our knowledge, this is the first report of ARWV-1 infecting apple trees in China. Further research is needed to determine whether and how ARWV-1 affects apple yield and quality.</description><issn>0191-2917</issn><issn>1943-7692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk5_gSC59Kaak5N-BLyR6XQwVFCvQ9okWOmamrTK_r0dm96cD973PQceQs6BXQGT4rozdUwYJBzGmqdJZ9oDMgUpMMkzyQ_JlIEcZQn5hJzE-MkYEyIrjskEsUBRpOmU3CzqEHsabOdDT72juusaS8NQljZs6I_3hn7XYYgUaN3u1XGYf9StPiVHTjfRnu37jLwv7t_mj8nq-WE5v10lFebQJ8gYShTaGssrLFKnK5FxjaYAqVEgcuCZwVxoLXNdsFS7jJcuqxw3sqwMzsjl7m4X_NdgY6_Wdaxs0-jW-iEqngJwAYxloxV31ir4GIN1qgv1WoeNAqa22NTL3fJVMVAc1BbbuD-NqYv9g6FcW_Of-eOEv6QuaJI</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hu, Guojun</creator><creator>Dong, Yafeng</creator><creator>Zhang, Zunping</creator><creator>Fan, Xudong</creator><creator>Ren, Fang</creator><creator>Lu, Xingkai</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7989-6441</orcidid></search><sort><creationdate>20211101</creationdate><title>First report of apple rubbery wood virus 1 in apple in China</title><author>Hu, Guojun ; Dong, Yafeng ; Zhang, Zunping ; Fan, Xudong ; Ren, Fang ; Lu, Xingkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-3003934aede2c385fac462a3d819a34332126d374aa97a805af62bf6cf2d9bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guojun</creatorcontrib><creatorcontrib>Dong, Yafeng</creatorcontrib><creatorcontrib>Zhang, Zunping</creatorcontrib><creatorcontrib>Fan, Xudong</creatorcontrib><creatorcontrib>Ren, Fang</creatorcontrib><creatorcontrib>Lu, Xingkai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guojun</au><au>Dong, Yafeng</au><au>Zhang, Zunping</au><au>Fan, Xudong</au><au>Ren, Fang</au><au>Lu, Xingkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First report of apple rubbery wood virus 1 in apple in China</atitle><jtitle>Plant disease</jtitle><addtitle>Plant Dis</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>105</volume><issue>11</issue><issn>0191-2917</issn><eissn>1943-7692</eissn><abstract>More than 30 viral and subviral pathogens infect apple (Malus domestica, an important fruit crop in China) trees and rootstocks, posing a threat to its production. With advances in diagnostic technologies, new viruses including apple rubbery wood virus 1 (ARWV-1), apple rubbery wood virus 2 (ARWV-2), apple luteovirus 1 (ALV), and citrus virus A (CiVA) have been detected (Beatriz et al. 2018; Rott et al. 2018; Hu et al. 2021). ARWV-1 (family Phenuiviridae) is a negative-sense single-stranded RNA virus with three RNA segments (large [L], medium [M], and small [S]). It causes apple rubbery wood disease (Rott et al. 2018) and is found in apple rootstocks, causing leaf yellowing and mottle symptoms in Korea (Lim et al. 2018). To determine virus prevalence in apple trees in China, 200 apple leaf and shoot samples were collected from orchards in Hebei (n = 26), Liaoning (n = 40), Shandong (n = 100), Yunnan (n = 25), Shanxi (n = 4) and Inner Mongolia (5) in 2020. Total RNA was extracted from the shoot phloem or leaf tissues (Hu et al., 2015) and subjected to reverse transcription (RT)-PCR to detect apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple necrotic mosaic virus (ApNMV), apple scar skin viroid (ASSVd), ARWV-2, ARWV-1, ALVand CiVA using primers specific to respective viruses (Supplementary Table 1). The prevalence of ACLSV, ASPV, ASGV, ApNMV, ASSVd, ARWV-2, ARWV-1, ALV and CiVA was found to be 75.5%, 85.5%, 86.0%, 43.0%, 4.0%, 48.5%, 10.5%, 0% and 0%, respectively (Supplementary Table 2). Among the 21 positive samples for ARWV-1, three, five and 13 samples were from Hebei, Liaoning and Shandong, respectively. Five ARWV-1-positive samples (cultivars Xinhongjiangjun, Xiangfu-1, Xiangfu-2 and Tianhong) showed leaf mosaic symptoms. To confirm the RT-PCR assay, the projected ARWV-1 amplicons from cvs. Xiangfu-1 and Tianhong were cloned into the pMD18-T vector (Takara, Dalian, China), and three clones of each sample were sequenced. BLASTn analyses demonstrated that the sequences (accession nos. MW507810-MW507811) shared 96.9%-98.9% identity withARWV-1 sequences (MH714536, MF062127, and MF062138) in GenBank. An lncRNA library was prepared for high-throughput sequencing (HTS) with the Illumina HiSeq platform using Xiangfu-1 RNA. A total of 71,613,294 reads were obtained. De novo assembly of the reads revealed 135 viral sequence contigs of ACLSV, ASGV, ASPV, ApNMV, ARWV-1, and ARWV-2. The sequences of contig-100_88981 (302 nt) and contig-100_25701 (834 nt) (accession nos. MW507821 and MW507820) matched those of segment S from ARWV-1, whereas the sequences of contig-100_6542 (1,660 nt) and contig-100_27 (7,364 nt) (accession nos. MW507819 and MW507818) matched those of segments M and L, respectively. To confirm the HTS results, fragments of segments L (744 bp), M (747 bp), and S (554 bp) from Xiangfu-1 and Tianhong were amplified (Supplementary Table 1) and sequenced. The sequences (accession nos. MW507812-MW507817) showed 94.8%-99.9% nucleotide identity with the corresponding segments of ARWV-1. Co-infection of ARWV-1 with ApNMV and/or ARWV-2 was confirmed in 17/21 ARWV-1-positive samples. The prevalence of ARWV-1/ApNMV, ARWV-1/ARWV-2, and ARWV-1/ApNMV/ARWV-2 infections was 61.9%, 71.4%, and 52.4%, respectively. To our knowledge, this is the first report of ARWV-1 infecting apple trees in China. Further research is needed to determine whether and how ARWV-1 affects apple yield and quality.</abstract><cop>United States</cop><pmid>33834855</pmid><doi>10.1094/pdis-01-21-0175-pdn</doi><orcidid>https://orcid.org/0000-0001-7989-6441</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0191-2917 |
ispartof | Plant disease, 2021-11, Vol.105 (11) |
issn | 0191-2917 1943-7692 |
language | eng |
recordid | cdi_proquest_miscellaneous_2511241006 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; American Phytopathological Society Journal Back Issues |
title | First report of apple rubbery wood virus 1 in apple in China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20report%20of%20apple%20rubbery%20wood%20virus%201%20in%20apple%20in%20China&rft.jtitle=Plant%20disease&rft.au=Hu,%20Guojun&rft.date=2021-11-01&rft.volume=105&rft.issue=11&rft.issn=0191-2917&rft.eissn=1943-7692&rft_id=info:doi/10.1094/pdis-01-21-0175-pdn&rft_dat=%3Cproquest_cross%3E2511241006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511241006&rft_id=info:pmid/33834855&rfr_iscdi=true |