Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions
An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-04, Vol.12 (14), p.3662-3668 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3668 |
---|---|
container_issue | 14 |
container_start_page | 3662 |
container_title | The journal of physical chemistry letters |
container_volume | 12 |
creator | Han, Herim Choi, Sunghwan |
description | An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database. |
doi_str_mv | 10.1021/acs.jpclett.1c00578 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2510266942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510266942</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EoqXwC5CQj1zS2o6zmBsqZZHKIlq4Ro4zpqmyFNuR4N_j0oA4cZrR6L2ZeR9Cp5SMKWF0IpUdrzeqAufGVBESJekeGlLB0yChabT_px-gI2vXhMSCpMkhGoRhyuKUiyF6XRrZWA0Gz0GapmzesDZtjRdl3VXSlW2DXYtnHxswZQ2NkxW-kk5e4If7ZzxdQV0qP1qsSu3wk4GiVFuPPUYHWlYWTvo6Qi_Xs-X0Npg_3txNL-eBDAVxQSSIgDiScSg4KbT2vzJeUM041yDzMFaUCpYmKSliCFUeKR7pXDNdsATAj0bofLd3Y9r3DqzL6tIqqCrZQNvZjEUeVRwLzrw03EmVaa01oLONjyTNZ0ZJtgWaeaBZDzTrgXrXWX-gy2sofj0_BL1gshN8u9vOND7vvyu_AGk-hPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510266942</pqid></control><display><type>article</type><title>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</title><source>ACS Publications</source><creator>Han, Herim ; Choi, Sunghwan</creator><creatorcontrib>Han, Herim ; Choi, Sunghwan</creatorcontrib><description>An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c00578</identifier><identifier>PMID: 33826849</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2021-04, Vol.12 (14), p.3662-3668</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</citedby><cites>FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</cites><orcidid>0000-0002-9385-6160 ; 0000-0002-4330-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c00578$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00578$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33826849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Herim</creatorcontrib><creatorcontrib>Choi, Sunghwan</creatorcontrib><title>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EoqXwC5CQj1zS2o6zmBsqZZHKIlq4Ro4zpqmyFNuR4N_j0oA4cZrR6L2ZeR9Cp5SMKWF0IpUdrzeqAufGVBESJekeGlLB0yChabT_px-gI2vXhMSCpMkhGoRhyuKUiyF6XRrZWA0Gz0GapmzesDZtjRdl3VXSlW2DXYtnHxswZQ2NkxW-kk5e4If7ZzxdQV0qP1qsSu3wk4GiVFuPPUYHWlYWTvo6Qi_Xs-X0Npg_3txNL-eBDAVxQSSIgDiScSg4KbT2vzJeUM041yDzMFaUCpYmKSliCFUeKR7pXDNdsATAj0bofLd3Y9r3DqzL6tIqqCrZQNvZjEUeVRwLzrw03EmVaa01oLONjyTNZ0ZJtgWaeaBZDzTrgXrXWX-gy2sofj0_BL1gshN8u9vOND7vvyu_AGk-hPA</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Han, Herim</creator><creator>Choi, Sunghwan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9385-6160</orcidid><orcidid>https://orcid.org/0000-0002-4330-7710</orcidid></search><sort><creationdate>20210415</creationdate><title>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</title><author>Han, Herim ; Choi, Sunghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Herim</creatorcontrib><creatorcontrib>Choi, Sunghwan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Herim</au><au>Choi, Sunghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>12</volume><issue>14</issue><spage>3662</spage><epage>3668</epage><pages>3662-3668</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33826849</pmid><doi>10.1021/acs.jpclett.1c00578</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9385-6160</orcidid><orcidid>https://orcid.org/0000-0002-4330-7710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2021-04, Vol.12 (14), p.3662-3668 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2510266942 |
source | ACS Publications |
subjects | Physical Insights into Materials and Molecular Properties |
title | Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20from%20Simulation%20to%20Experimental%20Data:%20NMR%20Chemical%20Shift%20Predictions&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Han,%20Herim&rft.date=2021-04-15&rft.volume=12&rft.issue=14&rft.spage=3662&rft.epage=3668&rft.pages=3662-3668&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c00578&rft_dat=%3Cproquest_cross%3E2510266942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510266942&rft_id=info:pmid/33826849&rfr_iscdi=true |