Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions

An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-04, Vol.12 (14), p.3662-3668
Hauptverfasser: Han, Herim, Choi, Sunghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3668
container_issue 14
container_start_page 3662
container_title The journal of physical chemistry letters
container_volume 12
creator Han, Herim
Choi, Sunghwan
description An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database.
doi_str_mv 10.1021/acs.jpclett.1c00578
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2510266942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510266942</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EoqXwC5CQj1zS2o6zmBsqZZHKIlq4Ro4zpqmyFNuR4N_j0oA4cZrR6L2ZeR9Cp5SMKWF0IpUdrzeqAufGVBESJekeGlLB0yChabT_px-gI2vXhMSCpMkhGoRhyuKUiyF6XRrZWA0Gz0GapmzesDZtjRdl3VXSlW2DXYtnHxswZQ2NkxW-kk5e4If7ZzxdQV0qP1qsSu3wk4GiVFuPPUYHWlYWTvo6Qi_Xs-X0Npg_3txNL-eBDAVxQSSIgDiScSg4KbT2vzJeUM041yDzMFaUCpYmKSliCFUeKR7pXDNdsATAj0bofLd3Y9r3DqzL6tIqqCrZQNvZjEUeVRwLzrw03EmVaa01oLONjyTNZ0ZJtgWaeaBZDzTrgXrXWX-gy2sofj0_BL1gshN8u9vOND7vvyu_AGk-hPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510266942</pqid></control><display><type>article</type><title>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</title><source>ACS Publications</source><creator>Han, Herim ; Choi, Sunghwan</creator><creatorcontrib>Han, Herim ; Choi, Sunghwan</creatorcontrib><description>An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c00578</identifier><identifier>PMID: 33826849</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2021-04, Vol.12 (14), p.3662-3668</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</citedby><cites>FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</cites><orcidid>0000-0002-9385-6160 ; 0000-0002-4330-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c00578$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00578$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33826849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Herim</creatorcontrib><creatorcontrib>Choi, Sunghwan</creatorcontrib><title>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EoqXwC5CQj1zS2o6zmBsqZZHKIlq4Ro4zpqmyFNuR4N_j0oA4cZrR6L2ZeR9Cp5SMKWF0IpUdrzeqAufGVBESJekeGlLB0yChabT_px-gI2vXhMSCpMkhGoRhyuKUiyF6XRrZWA0Gz0GapmzesDZtjRdl3VXSlW2DXYtnHxswZQ2NkxW-kk5e4If7ZzxdQV0qP1qsSu3wk4GiVFuPPUYHWlYWTvo6Qi_Xs-X0Npg_3txNL-eBDAVxQSSIgDiScSg4KbT2vzJeUM041yDzMFaUCpYmKSliCFUeKR7pXDNdsATAj0bofLd3Y9r3DqzL6tIqqCrZQNvZjEUeVRwLzrw03EmVaa01oLONjyTNZ0ZJtgWaeaBZDzTrgXrXWX-gy2sofj0_BL1gshN8u9vOND7vvyu_AGk-hPA</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Han, Herim</creator><creator>Choi, Sunghwan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9385-6160</orcidid><orcidid>https://orcid.org/0000-0002-4330-7710</orcidid></search><sort><creationdate>20210415</creationdate><title>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</title><author>Han, Herim ; Choi, Sunghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-5909e65a63940dff71824d1f244feab36c11928780d6e3cb5c45fbf2fd27ee6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Herim</creatorcontrib><creatorcontrib>Choi, Sunghwan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Herim</au><au>Choi, Sunghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>12</volume><issue>14</issue><spage>3662</spage><epage>3668</epage><pages>3662-3668</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>An accurate prediction of chemical shifts (δ) to elucidate molecular structures has been a challenging problem. Recently, noble machine learning architectures achieve accurate prediction performance, but the difficulty of building a huge chemical database limits the applicability of machine learning approaches. In this work, we demonstrate that the prior knowledge gained from the simulation database is successfully transferred into the problem of predicting an experimentally measured δ. Although both simulation and experimental databases are vastly different in chemical perspectives, reliable accuracy for δ is achieved by additional training with randomly sampled small numbers of experimental data. Furthermore, the prior knowledge allows us to successfully train the model on the more focused chemical space that the experimental database sparsely covers. The proposed approach, the knowledge transfer from the simulation database, can be utilized to enhance the usability of the local experimental database.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33826849</pmid><doi>10.1021/acs.jpclett.1c00578</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9385-6160</orcidid><orcidid>https://orcid.org/0000-0002-4330-7710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-04, Vol.12 (14), p.3662-3668
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2510266942
source ACS Publications
subjects Physical Insights into Materials and Molecular Properties
title Transfer Learning from Simulation to Experimental Data: NMR Chemical Shift Predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20from%20Simulation%20to%20Experimental%20Data:%20NMR%20Chemical%20Shift%20Predictions&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Han,%20Herim&rft.date=2021-04-15&rft.volume=12&rft.issue=14&rft.spage=3662&rft.epage=3668&rft.pages=3662-3668&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c00578&rft_dat=%3Cproquest_cross%3E2510266942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510266942&rft_id=info:pmid/33826849&rfr_iscdi=true