A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI

Purpose Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2021-09, Vol.86 (3), p.1773-1785
Hauptverfasser: Ghotra, Anpreet, Kosakowski, Heather L., Takahashi, Atsushi, Etzel, Robin, May, Markus W., Scholz, Alina, Jansen, Andreas, Wald, Lawrence L., Kanwisher, Nancy, Saxe, Rebecca, Keil, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1785
container_issue 3
container_start_page 1773
container_title Magnetic resonance in medicine
container_volume 86
creator Ghotra, Anpreet
Kosakowski, Heather L.
Takahashi, Atsushi
Etzel, Robin
May, Markus W.
Scholz, Alina
Jansen, Andreas
Wald, Lawrence L.
Kanwisher, Nancy
Saxe, Rebecca
Keil, Boris
description Purpose Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil. Methods To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance. Results Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques. Conclusions An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.
doi_str_mv 10.1002/mrm.28791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2510244605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510244605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</originalsourceid><addsrcrecordid>eNp1kMtKw0AUQAdRbH0s_AEZcKOL6DyTmWUpvsAiSMVluEluNDWPOtModeUn-Al-i5_il5hadSG4Gu5wONx7CNnh7JAzJo4qVx0KE1m-QvpcCxEIbdUq6bNIsUByq3pkw_sJY8zaSK2TnpRGWK3CPrkZUF8848fLK2QwnRWPSKXopvQO6hpLCs7BnKZNUdK8cRSe4B5pUedQz2iNrWuKCm6L-pbCjMr3tzH6Eujo6nyLrOVQetz-fjfJ9cnxeHgWXFyeng8HF0EqjeEBRkaEIRjUJskw42CUVCZhiU0lixIJMoTFR64wZKHJldI8A21TJnSuIi43yf7SO3XNQ4t-FleFT7Esocam9bHQnAmlQqY7dO8POmlaV3fbdZSMFDdWLoQHSyp1jfcO83jquhvdPOYsXtSOu9rxV-2O3f02tkmF2S_5k7cDjpbAU1Hi_H9TPLoaLZWfjp-JTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537418931</pqid></control><display><type>article</type><title>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghotra, Anpreet ; Kosakowski, Heather L. ; Takahashi, Atsushi ; Etzel, Robin ; May, Markus W. ; Scholz, Alina ; Jansen, Andreas ; Wald, Lawrence L. ; Kanwisher, Nancy ; Saxe, Rebecca ; Keil, Boris</creator><creatorcontrib>Ghotra, Anpreet ; Kosakowski, Heather L. ; Takahashi, Atsushi ; Etzel, Robin ; May, Markus W. ; Scholz, Alina ; Jansen, Andreas ; Wald, Lawrence L. ; Kanwisher, Nancy ; Saxe, Rebecca ; Keil, Boris</creatorcontrib><description>Purpose Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil. Methods To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance. Results Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques. Conclusions An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28791</identifier><identifier>PMID: 33829546</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>accelerated MRI ; Arrays ; Babies ; Child ; Data acquisition ; Functional magnetic resonance imaging ; Humans ; In vivo methods and tests ; Infant ; Infants ; Magnetic Resonance Imaging ; Medical imaging ; neonatal imaging ; Neuroimaging ; pediatric imaging ; pediatric MRI coil ; Phantoms, Imaging ; phased array coil ; Reconstruction ; Seats ; Signal-To-Noise Ratio ; Spatial discrimination ; Spatial resolution ; Wakefulness</subject><ispartof>Magnetic resonance in medicine, 2021-09, Vol.86 (3), p.1773-1785</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</citedby><cites>FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</cites><orcidid>0000-0001-8278-6307 ; 0000-0003-3853-7885 ; 0000-0002-3324-6889 ; 0000-0001-5689-0426 ; 0000-0001-6445-9062 ; 0000-0002-5182-4320 ; 0000-0003-3869-9681 ; 0000-0002-8783-589X ; 0000-0003-0805-8330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28791$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28791$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33829546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghotra, Anpreet</creatorcontrib><creatorcontrib>Kosakowski, Heather L.</creatorcontrib><creatorcontrib>Takahashi, Atsushi</creatorcontrib><creatorcontrib>Etzel, Robin</creatorcontrib><creatorcontrib>May, Markus W.</creatorcontrib><creatorcontrib>Scholz, Alina</creatorcontrib><creatorcontrib>Jansen, Andreas</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Kanwisher, Nancy</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Keil, Boris</creatorcontrib><title>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil. Methods To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance. Results Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques. Conclusions An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.</description><subject>accelerated MRI</subject><subject>Arrays</subject><subject>Babies</subject><subject>Child</subject><subject>Data acquisition</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Infant</subject><subject>Infants</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>neonatal imaging</subject><subject>Neuroimaging</subject><subject>pediatric imaging</subject><subject>pediatric MRI coil</subject><subject>Phantoms, Imaging</subject><subject>phased array coil</subject><subject>Reconstruction</subject><subject>Seats</subject><subject>Signal-To-Noise Ratio</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Wakefulness</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kMtKw0AUQAdRbH0s_AEZcKOL6DyTmWUpvsAiSMVluEluNDWPOtModeUn-Al-i5_il5hadSG4Gu5wONx7CNnh7JAzJo4qVx0KE1m-QvpcCxEIbdUq6bNIsUByq3pkw_sJY8zaSK2TnpRGWK3CPrkZUF8848fLK2QwnRWPSKXopvQO6hpLCs7BnKZNUdK8cRSe4B5pUedQz2iNrWuKCm6L-pbCjMr3tzH6Eujo6nyLrOVQetz-fjfJ9cnxeHgWXFyeng8HF0EqjeEBRkaEIRjUJskw42CUVCZhiU0lixIJMoTFR64wZKHJldI8A21TJnSuIi43yf7SO3XNQ4t-FleFT7Esocam9bHQnAmlQqY7dO8POmlaV3fbdZSMFDdWLoQHSyp1jfcO83jquhvdPOYsXtSOu9rxV-2O3f02tkmF2S_5k7cDjpbAU1Hi_H9TPLoaLZWfjp-JTQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Ghotra, Anpreet</creator><creator>Kosakowski, Heather L.</creator><creator>Takahashi, Atsushi</creator><creator>Etzel, Robin</creator><creator>May, Markus W.</creator><creator>Scholz, Alina</creator><creator>Jansen, Andreas</creator><creator>Wald, Lawrence L.</creator><creator>Kanwisher, Nancy</creator><creator>Saxe, Rebecca</creator><creator>Keil, Boris</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8278-6307</orcidid><orcidid>https://orcid.org/0000-0003-3853-7885</orcidid><orcidid>https://orcid.org/0000-0002-3324-6889</orcidid><orcidid>https://orcid.org/0000-0001-5689-0426</orcidid><orcidid>https://orcid.org/0000-0001-6445-9062</orcidid><orcidid>https://orcid.org/0000-0002-5182-4320</orcidid><orcidid>https://orcid.org/0000-0003-3869-9681</orcidid><orcidid>https://orcid.org/0000-0002-8783-589X</orcidid><orcidid>https://orcid.org/0000-0003-0805-8330</orcidid></search><sort><creationdate>202109</creationdate><title>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</title><author>Ghotra, Anpreet ; Kosakowski, Heather L. ; Takahashi, Atsushi ; Etzel, Robin ; May, Markus W. ; Scholz, Alina ; Jansen, Andreas ; Wald, Lawrence L. ; Kanwisher, Nancy ; Saxe, Rebecca ; Keil, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>accelerated MRI</topic><topic>Arrays</topic><topic>Babies</topic><topic>Child</topic><topic>Data acquisition</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Infant</topic><topic>Infants</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>neonatal imaging</topic><topic>Neuroimaging</topic><topic>pediatric imaging</topic><topic>pediatric MRI coil</topic><topic>Phantoms, Imaging</topic><topic>phased array coil</topic><topic>Reconstruction</topic><topic>Seats</topic><topic>Signal-To-Noise Ratio</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Wakefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghotra, Anpreet</creatorcontrib><creatorcontrib>Kosakowski, Heather L.</creatorcontrib><creatorcontrib>Takahashi, Atsushi</creatorcontrib><creatorcontrib>Etzel, Robin</creatorcontrib><creatorcontrib>May, Markus W.</creatorcontrib><creatorcontrib>Scholz, Alina</creatorcontrib><creatorcontrib>Jansen, Andreas</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Kanwisher, Nancy</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Keil, Boris</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghotra, Anpreet</au><au>Kosakowski, Heather L.</au><au>Takahashi, Atsushi</au><au>Etzel, Robin</au><au>May, Markus W.</au><au>Scholz, Alina</au><au>Jansen, Andreas</au><au>Wald, Lawrence L.</au><au>Kanwisher, Nancy</au><au>Saxe, Rebecca</au><au>Keil, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-09</date><risdate>2021</risdate><volume>86</volume><issue>3</issue><spage>1773</spage><epage>1785</epage><pages>1773-1785</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil. Methods To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance. Results Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques. Conclusions An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33829546</pmid><doi>10.1002/mrm.28791</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8278-6307</orcidid><orcidid>https://orcid.org/0000-0003-3853-7885</orcidid><orcidid>https://orcid.org/0000-0002-3324-6889</orcidid><orcidid>https://orcid.org/0000-0001-5689-0426</orcidid><orcidid>https://orcid.org/0000-0001-6445-9062</orcidid><orcidid>https://orcid.org/0000-0002-5182-4320</orcidid><orcidid>https://orcid.org/0000-0003-3869-9681</orcidid><orcidid>https://orcid.org/0000-0002-8783-589X</orcidid><orcidid>https://orcid.org/0000-0003-0805-8330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2021-09, Vol.86 (3), p.1773-1785
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2510244605
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects accelerated MRI
Arrays
Babies
Child
Data acquisition
Functional magnetic resonance imaging
Humans
In vivo methods and tests
Infant
Infants
Magnetic Resonance Imaging
Medical imaging
neonatal imaging
Neuroimaging
pediatric imaging
pediatric MRI coil
Phantoms, Imaging
phased array coil
Reconstruction
Seats
Signal-To-Noise Ratio
Spatial discrimination
Spatial resolution
Wakefulness
title A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20size%E2%80%90adaptive%2032%E2%80%90channel%20array%20coil%20for%20awake%20infant%20neuroimaging%20at%203%C2%A0Tesla%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ghotra,%20Anpreet&rft.date=2021-09&rft.volume=86&rft.issue=3&rft.spage=1773&rft.epage=1785&rft.pages=1773-1785&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28791&rft_dat=%3Cproquest_cross%3E2510244605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537418931&rft_id=info:pmid/33829546&rfr_iscdi=true