A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI
Purpose Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2021-09, Vol.86 (3), p.1773-1785 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1785 |
---|---|
container_issue | 3 |
container_start_page | 1773 |
container_title | Magnetic resonance in medicine |
container_volume | 86 |
creator | Ghotra, Anpreet Kosakowski, Heather L. Takahashi, Atsushi Etzel, Robin May, Markus W. Scholz, Alina Jansen, Andreas Wald, Lawrence L. Kanwisher, Nancy Saxe, Rebecca Keil, Boris |
description | Purpose
Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil.
Methods
To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance.
Results
Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques.
Conclusions
An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants. |
doi_str_mv | 10.1002/mrm.28791 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2510244605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510244605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</originalsourceid><addsrcrecordid>eNp1kMtKw0AUQAdRbH0s_AEZcKOL6DyTmWUpvsAiSMVluEluNDWPOtModeUn-Al-i5_il5hadSG4Gu5wONx7CNnh7JAzJo4qVx0KE1m-QvpcCxEIbdUq6bNIsUByq3pkw_sJY8zaSK2TnpRGWK3CPrkZUF8848fLK2QwnRWPSKXopvQO6hpLCs7BnKZNUdK8cRSe4B5pUedQz2iNrWuKCm6L-pbCjMr3tzH6Eujo6nyLrOVQetz-fjfJ9cnxeHgWXFyeng8HF0EqjeEBRkaEIRjUJskw42CUVCZhiU0lixIJMoTFR64wZKHJldI8A21TJnSuIi43yf7SO3XNQ4t-FleFT7Esocam9bHQnAmlQqY7dO8POmlaV3fbdZSMFDdWLoQHSyp1jfcO83jquhvdPOYsXtSOu9rxV-2O3f02tkmF2S_5k7cDjpbAU1Hi_H9TPLoaLZWfjp-JTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537418931</pqid></control><display><type>article</type><title>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghotra, Anpreet ; Kosakowski, Heather L. ; Takahashi, Atsushi ; Etzel, Robin ; May, Markus W. ; Scholz, Alina ; Jansen, Andreas ; Wald, Lawrence L. ; Kanwisher, Nancy ; Saxe, Rebecca ; Keil, Boris</creator><creatorcontrib>Ghotra, Anpreet ; Kosakowski, Heather L. ; Takahashi, Atsushi ; Etzel, Robin ; May, Markus W. ; Scholz, Alina ; Jansen, Andreas ; Wald, Lawrence L. ; Kanwisher, Nancy ; Saxe, Rebecca ; Keil, Boris</creatorcontrib><description>Purpose
Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil.
Methods
To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance.
Results
Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques.
Conclusions
An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28791</identifier><identifier>PMID: 33829546</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>accelerated MRI ; Arrays ; Babies ; Child ; Data acquisition ; Functional magnetic resonance imaging ; Humans ; In vivo methods and tests ; Infant ; Infants ; Magnetic Resonance Imaging ; Medical imaging ; neonatal imaging ; Neuroimaging ; pediatric imaging ; pediatric MRI coil ; Phantoms, Imaging ; phased array coil ; Reconstruction ; Seats ; Signal-To-Noise Ratio ; Spatial discrimination ; Spatial resolution ; Wakefulness</subject><ispartof>Magnetic resonance in medicine, 2021-09, Vol.86 (3), p.1773-1785</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</citedby><cites>FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</cites><orcidid>0000-0001-8278-6307 ; 0000-0003-3853-7885 ; 0000-0002-3324-6889 ; 0000-0001-5689-0426 ; 0000-0001-6445-9062 ; 0000-0002-5182-4320 ; 0000-0003-3869-9681 ; 0000-0002-8783-589X ; 0000-0003-0805-8330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28791$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28791$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33829546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghotra, Anpreet</creatorcontrib><creatorcontrib>Kosakowski, Heather L.</creatorcontrib><creatorcontrib>Takahashi, Atsushi</creatorcontrib><creatorcontrib>Etzel, Robin</creatorcontrib><creatorcontrib>May, Markus W.</creatorcontrib><creatorcontrib>Scholz, Alina</creatorcontrib><creatorcontrib>Jansen, Andreas</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Kanwisher, Nancy</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Keil, Boris</creatorcontrib><title>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil.
Methods
To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance.
Results
Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques.
Conclusions
An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.</description><subject>accelerated MRI</subject><subject>Arrays</subject><subject>Babies</subject><subject>Child</subject><subject>Data acquisition</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Infant</subject><subject>Infants</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>neonatal imaging</subject><subject>Neuroimaging</subject><subject>pediatric imaging</subject><subject>pediatric MRI coil</subject><subject>Phantoms, Imaging</subject><subject>phased array coil</subject><subject>Reconstruction</subject><subject>Seats</subject><subject>Signal-To-Noise Ratio</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Wakefulness</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kMtKw0AUQAdRbH0s_AEZcKOL6DyTmWUpvsAiSMVluEluNDWPOtModeUn-Al-i5_il5hadSG4Gu5wONx7CNnh7JAzJo4qVx0KE1m-QvpcCxEIbdUq6bNIsUByq3pkw_sJY8zaSK2TnpRGWK3CPrkZUF8848fLK2QwnRWPSKXopvQO6hpLCs7BnKZNUdK8cRSe4B5pUedQz2iNrWuKCm6L-pbCjMr3tzH6Eujo6nyLrOVQetz-fjfJ9cnxeHgWXFyeng8HF0EqjeEBRkaEIRjUJskw42CUVCZhiU0lixIJMoTFR64wZKHJldI8A21TJnSuIi43yf7SO3XNQ4t-FleFT7Esocam9bHQnAmlQqY7dO8POmlaV3fbdZSMFDdWLoQHSyp1jfcO83jquhvdPOYsXtSOu9rxV-2O3f02tkmF2S_5k7cDjpbAU1Hi_H9TPLoaLZWfjp-JTQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Ghotra, Anpreet</creator><creator>Kosakowski, Heather L.</creator><creator>Takahashi, Atsushi</creator><creator>Etzel, Robin</creator><creator>May, Markus W.</creator><creator>Scholz, Alina</creator><creator>Jansen, Andreas</creator><creator>Wald, Lawrence L.</creator><creator>Kanwisher, Nancy</creator><creator>Saxe, Rebecca</creator><creator>Keil, Boris</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8278-6307</orcidid><orcidid>https://orcid.org/0000-0003-3853-7885</orcidid><orcidid>https://orcid.org/0000-0002-3324-6889</orcidid><orcidid>https://orcid.org/0000-0001-5689-0426</orcidid><orcidid>https://orcid.org/0000-0001-6445-9062</orcidid><orcidid>https://orcid.org/0000-0002-5182-4320</orcidid><orcidid>https://orcid.org/0000-0003-3869-9681</orcidid><orcidid>https://orcid.org/0000-0002-8783-589X</orcidid><orcidid>https://orcid.org/0000-0003-0805-8330</orcidid></search><sort><creationdate>202109</creationdate><title>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</title><author>Ghotra, Anpreet ; Kosakowski, Heather L. ; Takahashi, Atsushi ; Etzel, Robin ; May, Markus W. ; Scholz, Alina ; Jansen, Andreas ; Wald, Lawrence L. ; Kanwisher, Nancy ; Saxe, Rebecca ; Keil, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-e78266a8e58bded1a84348b0b9c307b3a36a348bf4e6068f4451da59c025f4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>accelerated MRI</topic><topic>Arrays</topic><topic>Babies</topic><topic>Child</topic><topic>Data acquisition</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Infant</topic><topic>Infants</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>neonatal imaging</topic><topic>Neuroimaging</topic><topic>pediatric imaging</topic><topic>pediatric MRI coil</topic><topic>Phantoms, Imaging</topic><topic>phased array coil</topic><topic>Reconstruction</topic><topic>Seats</topic><topic>Signal-To-Noise Ratio</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Wakefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghotra, Anpreet</creatorcontrib><creatorcontrib>Kosakowski, Heather L.</creatorcontrib><creatorcontrib>Takahashi, Atsushi</creatorcontrib><creatorcontrib>Etzel, Robin</creatorcontrib><creatorcontrib>May, Markus W.</creatorcontrib><creatorcontrib>Scholz, Alina</creatorcontrib><creatorcontrib>Jansen, Andreas</creatorcontrib><creatorcontrib>Wald, Lawrence L.</creatorcontrib><creatorcontrib>Kanwisher, Nancy</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Keil, Boris</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghotra, Anpreet</au><au>Kosakowski, Heather L.</au><au>Takahashi, Atsushi</au><au>Etzel, Robin</au><au>May, Markus W.</au><au>Scholz, Alina</au><au>Jansen, Andreas</au><au>Wald, Lawrence L.</au><au>Kanwisher, Nancy</au><au>Saxe, Rebecca</au><au>Keil, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-09</date><risdate>2021</risdate><volume>86</volume><issue>3</issue><spage>1773</spage><epage>1785</epage><pages>1773-1785</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil.
Methods
To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance.
Results
Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques.
Conclusions
An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33829546</pmid><doi>10.1002/mrm.28791</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8278-6307</orcidid><orcidid>https://orcid.org/0000-0003-3853-7885</orcidid><orcidid>https://orcid.org/0000-0002-3324-6889</orcidid><orcidid>https://orcid.org/0000-0001-5689-0426</orcidid><orcidid>https://orcid.org/0000-0001-6445-9062</orcidid><orcidid>https://orcid.org/0000-0002-5182-4320</orcidid><orcidid>https://orcid.org/0000-0003-3869-9681</orcidid><orcidid>https://orcid.org/0000-0002-8783-589X</orcidid><orcidid>https://orcid.org/0000-0003-0805-8330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2021-09, Vol.86 (3), p.1773-1785 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2510244605 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | accelerated MRI Arrays Babies Child Data acquisition Functional magnetic resonance imaging Humans In vivo methods and tests Infant Infants Magnetic Resonance Imaging Medical imaging neonatal imaging Neuroimaging pediatric imaging pediatric MRI coil Phantoms, Imaging phased array coil Reconstruction Seats Signal-To-Noise Ratio Spatial discrimination Spatial resolution Wakefulness |
title | A size‐adaptive 32‐channel array coil for awake infant neuroimaging at 3 Tesla MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20size%E2%80%90adaptive%2032%E2%80%90channel%20array%20coil%20for%20awake%20infant%20neuroimaging%20at%203%C2%A0Tesla%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ghotra,%20Anpreet&rft.date=2021-09&rft.volume=86&rft.issue=3&rft.spage=1773&rft.epage=1785&rft.pages=1773-1785&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28791&rft_dat=%3Cproquest_cross%3E2510244605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537418931&rft_id=info:pmid/33829546&rfr_iscdi=true |