Bespoke mirror fabrication for quantum simulation with light in open-access microcavities

In this work, we use focused ion beam (FIB) milling to generate custom mirror shapes for quantum simulation in optical microcavities. In the paraxial limit, light in multimode optical microcavities follows an equation of motion which is equivalent to Schrödinger's equation, with the surface top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-03, Vol.29 (7), p.10800-10810
Hauptverfasser: Walker, Benjamin T, Ash, Benjamin J, Trichet, Aurélien A P, Smith, Jason M, Nyman, Robert A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10810
container_issue 7
container_start_page 10800
container_title Optics express
container_volume 29
creator Walker, Benjamin T
Ash, Benjamin J
Trichet, Aurélien A P
Smith, Jason M
Nyman, Robert A
description In this work, we use focused ion beam (FIB) milling to generate custom mirror shapes for quantum simulation in optical microcavities. In the paraxial limit, light in multimode optical microcavities follows an equation of motion which is equivalent to Schrödinger's equation, with the surface topography of the mirrors playing the role of the potential energy landscape. FIB milling allows us to engineer a wide variety of trapping potentials for microcavity light, through exquisite control over the mirror topography, including 2D box, 1D waveguide, and Mexican hat potentials. The 2D box potentials are sufficiently flat over tens of microns, that the optical modes of the cavity, found by solving Schrödinger's equation on the measured cavity topography, are standing-wave modes of the box, rather than localised to deviations. The predicted scattering loss due to surface roughness measured using atomic force microscopy is found to be 177 parts per million, which corresponds to a cavity finesse of 2.2 × 10 once other losses have been taken into account. Spectra from dye-filled microcavities formed using these features show thermalised light in flat 2D potentials close to dye resonance, and spectrally-resolved cavity modes at the predicted frequencies for elliptical potentials. These results also represent a first step towards realising superfluid light and quantum simulation in arbitrary-shaped optical microcavities using FIB milling.
doi_str_mv 10.1364/OE.422127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2509272566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509272566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-698c3880aca4077db9d83eff452f3dd0218aed075128b5a8f96109168f54f6bf3</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EoqUw8ALIIwwpvsV2RqjKRaqUBQYmy3FsasitdgLi7QlKQUznok-_zvkAOMdoiSln1_l6yQjBRByAOUYZSxiS4vBfPwMnMb4hhJnIxDGYUSoJIojPwcutjV37bmHtQ2gDdLoI3ujetw1047wbdNMPNYy-Hqpp_en7Laz867aHvoFtZ5tEG2NjHDNMaI3-8L238RQcOV1Fe7avC_B8t35aPSSb_P5xdbNJDOWoT3gmDZUSaaMZEqIsslJS6xxLiaNliQiW2pZIpJjIItXSZXx8C3PpUuZ44egCXE65XWh3g429qn00tqp0Y9shKpKijAiScj6iVxM6nhljsE51wdc6fCmM1I9Jla_VZHJkL_axQ1Hb8o_8VUe_AbtQbp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509272566</pqid></control><display><type>article</type><title>Bespoke mirror fabrication for quantum simulation with light in open-access microcavities</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Walker, Benjamin T ; Ash, Benjamin J ; Trichet, Aurélien A P ; Smith, Jason M ; Nyman, Robert A</creator><creatorcontrib>Walker, Benjamin T ; Ash, Benjamin J ; Trichet, Aurélien A P ; Smith, Jason M ; Nyman, Robert A</creatorcontrib><description>In this work, we use focused ion beam (FIB) milling to generate custom mirror shapes for quantum simulation in optical microcavities. In the paraxial limit, light in multimode optical microcavities follows an equation of motion which is equivalent to Schrödinger's equation, with the surface topography of the mirrors playing the role of the potential energy landscape. FIB milling allows us to engineer a wide variety of trapping potentials for microcavity light, through exquisite control over the mirror topography, including 2D box, 1D waveguide, and Mexican hat potentials. The 2D box potentials are sufficiently flat over tens of microns, that the optical modes of the cavity, found by solving Schrödinger's equation on the measured cavity topography, are standing-wave modes of the box, rather than localised to deviations. The predicted scattering loss due to surface roughness measured using atomic force microscopy is found to be 177 parts per million, which corresponds to a cavity finesse of 2.2 × 10 once other losses have been taken into account. Spectra from dye-filled microcavities formed using these features show thermalised light in flat 2D potentials close to dye resonance, and spectrally-resolved cavity modes at the predicted frequencies for elliptical potentials. These results also represent a first step towards realising superfluid light and quantum simulation in arbitrary-shaped optical microcavities using FIB milling.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.422127</identifier><identifier>PMID: 33820206</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2021-03, Vol.29 (7), p.10800-10810</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-698c3880aca4077db9d83eff452f3dd0218aed075128b5a8f96109168f54f6bf3</citedby><cites>FETCH-LOGICAL-c360t-698c3880aca4077db9d83eff452f3dd0218aed075128b5a8f96109168f54f6bf3</cites><orcidid>0000-0002-4572-0867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33820206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walker, Benjamin T</creatorcontrib><creatorcontrib>Ash, Benjamin J</creatorcontrib><creatorcontrib>Trichet, Aurélien A P</creatorcontrib><creatorcontrib>Smith, Jason M</creatorcontrib><creatorcontrib>Nyman, Robert A</creatorcontrib><title>Bespoke mirror fabrication for quantum simulation with light in open-access microcavities</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>In this work, we use focused ion beam (FIB) milling to generate custom mirror shapes for quantum simulation in optical microcavities. In the paraxial limit, light in multimode optical microcavities follows an equation of motion which is equivalent to Schrödinger's equation, with the surface topography of the mirrors playing the role of the potential energy landscape. FIB milling allows us to engineer a wide variety of trapping potentials for microcavity light, through exquisite control over the mirror topography, including 2D box, 1D waveguide, and Mexican hat potentials. The 2D box potentials are sufficiently flat over tens of microns, that the optical modes of the cavity, found by solving Schrödinger's equation on the measured cavity topography, are standing-wave modes of the box, rather than localised to deviations. The predicted scattering loss due to surface roughness measured using atomic force microscopy is found to be 177 parts per million, which corresponds to a cavity finesse of 2.2 × 10 once other losses have been taken into account. Spectra from dye-filled microcavities formed using these features show thermalised light in flat 2D potentials close to dye resonance, and spectrally-resolved cavity modes at the predicted frequencies for elliptical potentials. These results also represent a first step towards realising superfluid light and quantum simulation in arbitrary-shaped optical microcavities using FIB milling.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAUhi0EoqUw8ALIIwwpvsV2RqjKRaqUBQYmy3FsasitdgLi7QlKQUznok-_zvkAOMdoiSln1_l6yQjBRByAOUYZSxiS4vBfPwMnMb4hhJnIxDGYUSoJIojPwcutjV37bmHtQ2gDdLoI3ujetw1047wbdNMPNYy-Hqpp_en7Laz867aHvoFtZ5tEG2NjHDNMaI3-8L238RQcOV1Fe7avC_B8t35aPSSb_P5xdbNJDOWoT3gmDZUSaaMZEqIsslJS6xxLiaNliQiW2pZIpJjIItXSZXx8C3PpUuZ44egCXE65XWh3g429qn00tqp0Y9shKpKijAiScj6iVxM6nhljsE51wdc6fCmM1I9Jla_VZHJkL_axQ1Hb8o_8VUe_AbtQbp0</recordid><startdate>20210329</startdate><enddate>20210329</enddate><creator>Walker, Benjamin T</creator><creator>Ash, Benjamin J</creator><creator>Trichet, Aurélien A P</creator><creator>Smith, Jason M</creator><creator>Nyman, Robert A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4572-0867</orcidid></search><sort><creationdate>20210329</creationdate><title>Bespoke mirror fabrication for quantum simulation with light in open-access microcavities</title><author>Walker, Benjamin T ; Ash, Benjamin J ; Trichet, Aurélien A P ; Smith, Jason M ; Nyman, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-698c3880aca4077db9d83eff452f3dd0218aed075128b5a8f96109168f54f6bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walker, Benjamin T</creatorcontrib><creatorcontrib>Ash, Benjamin J</creatorcontrib><creatorcontrib>Trichet, Aurélien A P</creatorcontrib><creatorcontrib>Smith, Jason M</creatorcontrib><creatorcontrib>Nyman, Robert A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walker, Benjamin T</au><au>Ash, Benjamin J</au><au>Trichet, Aurélien A P</au><au>Smith, Jason M</au><au>Nyman, Robert A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bespoke mirror fabrication for quantum simulation with light in open-access microcavities</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-03-29</date><risdate>2021</risdate><volume>29</volume><issue>7</issue><spage>10800</spage><epage>10810</epage><pages>10800-10810</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>In this work, we use focused ion beam (FIB) milling to generate custom mirror shapes for quantum simulation in optical microcavities. In the paraxial limit, light in multimode optical microcavities follows an equation of motion which is equivalent to Schrödinger's equation, with the surface topography of the mirrors playing the role of the potential energy landscape. FIB milling allows us to engineer a wide variety of trapping potentials for microcavity light, through exquisite control over the mirror topography, including 2D box, 1D waveguide, and Mexican hat potentials. The 2D box potentials are sufficiently flat over tens of microns, that the optical modes of the cavity, found by solving Schrödinger's equation on the measured cavity topography, are standing-wave modes of the box, rather than localised to deviations. The predicted scattering loss due to surface roughness measured using atomic force microscopy is found to be 177 parts per million, which corresponds to a cavity finesse of 2.2 × 10 once other losses have been taken into account. Spectra from dye-filled microcavities formed using these features show thermalised light in flat 2D potentials close to dye resonance, and spectrally-resolved cavity modes at the predicted frequencies for elliptical potentials. These results also represent a first step towards realising superfluid light and quantum simulation in arbitrary-shaped optical microcavities using FIB milling.</abstract><cop>United States</cop><pmid>33820206</pmid><doi>10.1364/OE.422127</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4572-0867</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-03, Vol.29 (7), p.10800-10810
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2509272566
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Bespoke mirror fabrication for quantum simulation with light in open-access microcavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bespoke%20mirror%20fabrication%20for%20quantum%20simulation%20with%20light%20in%20open-access%20microcavities&rft.jtitle=Optics%20express&rft.au=Walker,%20Benjamin%20T&rft.date=2021-03-29&rft.volume=29&rft.issue=7&rft.spage=10800&rft.epage=10810&rft.pages=10800-10810&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.422127&rft_dat=%3Cproquest_cross%3E2509272566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509272566&rft_id=info:pmid/33820206&rfr_iscdi=true