Transient mid-IR nonlinear refraction in air

We use the polarization-sensitive, time-resolved Beam-Deflection technique to measure the nonlinear refraction of air, exciting in both the near and mid-IR and probing in the mid-IR. This gives us the first measurements for air using both excitation and probe in the mid-IR, and we find no dispersion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-03, Vol.29 (7), p.10863-10878
Hauptverfasser: Tofighi, Salimeh, Munera, Natalia, Reichert, Matthew, Hagan, David J, Van Stryland, Eric W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10878
container_issue 7
container_start_page 10863
container_title Optics express
container_volume 29
creator Tofighi, Salimeh
Munera, Natalia
Reichert, Matthew
Hagan, David J
Van Stryland, Eric W
description We use the polarization-sensitive, time-resolved Beam-Deflection technique to measure the nonlinear refraction of air, exciting in both the near and mid-IR and probing in the mid-IR. This gives us the first measurements for air using both excitation and probe in the mid-IR, and we find no dispersion of the bound-electronic nonlinear refractive index, n (λ ;λ ), assuming, as has been shown earlier, that the nuclear rotational nonlinear refraction is nearly dispersionless. From these data, we can model the pulsewidth dependence of the effective nonlinear refractive index, n , i.e., as would be measured by a single beam. Interestingly, n is maximized for a pulsewidth of approximately 0.5 ps. The position of this maximum is nearly independent of pressure while its magnitude decreases with increasing pressure and temperature. From the measurements and modeling, we predict the nonlinear refraction in the atmosphere at different altitudes.
doi_str_mv 10.1364/OE.414495
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2509272457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509272457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-79950100d5e3b7e3518a94ab751ad5282976294540bc4a53089bdbd30eff80623</originalsourceid><addsrcrecordid>eNpNkE9LwzAchoMobk4PfgHpUcHOX_41zVFG1cGgIPMc0iaFSJvOpD347e3oFE_ve3h4eXkQusWwxjRjT2WxZpgxyc_QEoNkKYNcnP_rC3QV4ycAZkKKS7SgNCdAMCzR4z5oH531Q9I5k27fE9_71nmrQxJsE3Q9uN4nzifahWt00eg22ptTrtDHS7HfvKW78nW7ed6lNSUwpEJKDhjAcEsrYSnHuZZMV4JjbTjJiRQZkYwzqGqmOYVcVqYyFGzT5JARukL38-4h9F-jjYPqXKxt22pv-zEqwkESQRgXE_owo3XoY5weq0NwnQ7fCoM6ylFloWY5E3t3mh2rzpo_8tcG_QHA0VvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509272457</pqid></control><display><type>article</type><title>Transient mid-IR nonlinear refraction in air</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tofighi, Salimeh ; Munera, Natalia ; Reichert, Matthew ; Hagan, David J ; Van Stryland, Eric W</creator><creatorcontrib>Tofighi, Salimeh ; Munera, Natalia ; Reichert, Matthew ; Hagan, David J ; Van Stryland, Eric W</creatorcontrib><description>We use the polarization-sensitive, time-resolved Beam-Deflection technique to measure the nonlinear refraction of air, exciting in both the near and mid-IR and probing in the mid-IR. This gives us the first measurements for air using both excitation and probe in the mid-IR, and we find no dispersion of the bound-electronic nonlinear refractive index, n (λ ;λ ), assuming, as has been shown earlier, that the nuclear rotational nonlinear refraction is nearly dispersionless. From these data, we can model the pulsewidth dependence of the effective nonlinear refractive index, n , i.e., as would be measured by a single beam. Interestingly, n is maximized for a pulsewidth of approximately 0.5 ps. The position of this maximum is nearly independent of pressure while its magnitude decreases with increasing pressure and temperature. From the measurements and modeling, we predict the nonlinear refraction in the atmosphere at different altitudes.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.414495</identifier><identifier>PMID: 33820210</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2021-03, Vol.29 (7), p.10863-10878</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-79950100d5e3b7e3518a94ab751ad5282976294540bc4a53089bdbd30eff80623</citedby><cites>FETCH-LOGICAL-c320t-79950100d5e3b7e3518a94ab751ad5282976294540bc4a53089bdbd30eff80623</cites><orcidid>0000-0003-1701-9376 ; 0000-0003-4618-4290 ; 0000-0003-2713-1767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33820210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tofighi, Salimeh</creatorcontrib><creatorcontrib>Munera, Natalia</creatorcontrib><creatorcontrib>Reichert, Matthew</creatorcontrib><creatorcontrib>Hagan, David J</creatorcontrib><creatorcontrib>Van Stryland, Eric W</creatorcontrib><title>Transient mid-IR nonlinear refraction in air</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We use the polarization-sensitive, time-resolved Beam-Deflection technique to measure the nonlinear refraction of air, exciting in both the near and mid-IR and probing in the mid-IR. This gives us the first measurements for air using both excitation and probe in the mid-IR, and we find no dispersion of the bound-electronic nonlinear refractive index, n (λ ;λ ), assuming, as has been shown earlier, that the nuclear rotational nonlinear refraction is nearly dispersionless. From these data, we can model the pulsewidth dependence of the effective nonlinear refractive index, n , i.e., as would be measured by a single beam. Interestingly, n is maximized for a pulsewidth of approximately 0.5 ps. The position of this maximum is nearly independent of pressure while its magnitude decreases with increasing pressure and temperature. From the measurements and modeling, we predict the nonlinear refraction in the atmosphere at different altitudes.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LwzAchoMobk4PfgHpUcHOX_41zVFG1cGgIPMc0iaFSJvOpD347e3oFE_ve3h4eXkQusWwxjRjT2WxZpgxyc_QEoNkKYNcnP_rC3QV4ycAZkKKS7SgNCdAMCzR4z5oH531Q9I5k27fE9_71nmrQxJsE3Q9uN4nzifahWt00eg22ptTrtDHS7HfvKW78nW7ed6lNSUwpEJKDhjAcEsrYSnHuZZMV4JjbTjJiRQZkYwzqGqmOYVcVqYyFGzT5JARukL38-4h9F-jjYPqXKxt22pv-zEqwkESQRgXE_owo3XoY5weq0NwnQ7fCoM6ylFloWY5E3t3mh2rzpo_8tcG_QHA0VvQ</recordid><startdate>20210329</startdate><enddate>20210329</enddate><creator>Tofighi, Salimeh</creator><creator>Munera, Natalia</creator><creator>Reichert, Matthew</creator><creator>Hagan, David J</creator><creator>Van Stryland, Eric W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1701-9376</orcidid><orcidid>https://orcid.org/0000-0003-4618-4290</orcidid><orcidid>https://orcid.org/0000-0003-2713-1767</orcidid></search><sort><creationdate>20210329</creationdate><title>Transient mid-IR nonlinear refraction in air</title><author>Tofighi, Salimeh ; Munera, Natalia ; Reichert, Matthew ; Hagan, David J ; Van Stryland, Eric W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-79950100d5e3b7e3518a94ab751ad5282976294540bc4a53089bdbd30eff80623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tofighi, Salimeh</creatorcontrib><creatorcontrib>Munera, Natalia</creatorcontrib><creatorcontrib>Reichert, Matthew</creatorcontrib><creatorcontrib>Hagan, David J</creatorcontrib><creatorcontrib>Van Stryland, Eric W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tofighi, Salimeh</au><au>Munera, Natalia</au><au>Reichert, Matthew</au><au>Hagan, David J</au><au>Van Stryland, Eric W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient mid-IR nonlinear refraction in air</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2021-03-29</date><risdate>2021</risdate><volume>29</volume><issue>7</issue><spage>10863</spage><epage>10878</epage><pages>10863-10878</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We use the polarization-sensitive, time-resolved Beam-Deflection technique to measure the nonlinear refraction of air, exciting in both the near and mid-IR and probing in the mid-IR. This gives us the first measurements for air using both excitation and probe in the mid-IR, and we find no dispersion of the bound-electronic nonlinear refractive index, n (λ ;λ ), assuming, as has been shown earlier, that the nuclear rotational nonlinear refraction is nearly dispersionless. From these data, we can model the pulsewidth dependence of the effective nonlinear refractive index, n , i.e., as would be measured by a single beam. Interestingly, n is maximized for a pulsewidth of approximately 0.5 ps. The position of this maximum is nearly independent of pressure while its magnitude decreases with increasing pressure and temperature. From the measurements and modeling, we predict the nonlinear refraction in the atmosphere at different altitudes.</abstract><cop>United States</cop><pmid>33820210</pmid><doi>10.1364/OE.414495</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1701-9376</orcidid><orcidid>https://orcid.org/0000-0003-4618-4290</orcidid><orcidid>https://orcid.org/0000-0003-2713-1767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-03, Vol.29 (7), p.10863-10878
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2509272457
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Transient mid-IR nonlinear refraction in air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20mid-IR%20nonlinear%20refraction%20in%20air&rft.jtitle=Optics%20express&rft.au=Tofighi,%20Salimeh&rft.date=2021-03-29&rft.volume=29&rft.issue=7&rft.spage=10863&rft.epage=10878&rft.pages=10863-10878&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.414495&rft_dat=%3Cproquest_cross%3E2509272457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509272457&rft_id=info:pmid/33820210&rfr_iscdi=true