Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration
Electrospun ultrathin polymer fibers hybridized with bioactive ceramics find use in many biomedical applications due to their unique and versatile abilities to modulate structure–performance relationships at the nano–bio interface. These organic–inorganic hybrid fibers present synergies that are oth...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2021-04, Vol.123, p.111853-111853, Article 111853 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111853 |
---|---|
container_issue | |
container_start_page | 111853 |
container_title | Materials Science & Engineering C |
container_volume | 123 |
creator | Ferreira, Filipe V. Otoni, Caio G. Lopes, João H. de Souza, Lucas P. Mei, Lucia H.I. Lona, Liliane M.F. Lozano, Karen Lobo, Anderson O. Mattoso, Luiz H.C. |
description | Electrospun ultrathin polymer fibers hybridized with bioactive ceramics find use in many biomedical applications due to their unique and versatile abilities to modulate structure–performance relationships at the nano–bio interface. These organic–inorganic hybrid fibers present synergies that are otherwise rare, even when the precursors are used individually, such as bioactivity in polymers and stiffness–toughness balance in bioactive ceramics. Despite these unique advantages, a comprehensive and timely review on this important topic is still missing. Herein we describe the most recent and relevant developments on electrospun ultrathin polymer fibers hybridized with bioactive ceramics, with emphasis on bone tissue regeneration. This review addresses the preparation of bioactive ceramics, particularly (nano) hydroxyapatite (HA; nHA) and bioactive glass (BG), which stand out as the ceramics of interest for bone regeneration. The anatomy and mechanical properties of bone as well as fundamental tissue–scaffold interaction mechanisms are covered. The process–structure–property relationships of electrospun ultrathin fibers are discussed in detail from a technical standpoint, as well as fabrication strategies, process variables, characterization methods, and biological requirements (in vitro and in vivo performances). Finally, we highlight the major challenges and outline perspectives to pave the route for the next-generation hybrid materials for bone tissue engineering.
[Display omitted]
•Composite ultrathin fibers denote cutting-edge systems for regenerative medicine.•Bioactive ceramics (BC) are essential for polymer ultrathin fibers to serve as scaffolds in bone tissue engineering.•Electrospinning is reviewed as a method to produce BC-containing ultrathin fibers with fine-tuned morphology. |
doi_str_mv | 10.1016/j.msec.2020.111853 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2508892141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493120337723</els_id><sourcerecordid>2508892141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b5314c7fac3fb7aaef23f19425ca0c85c9a2ea38f362f098c1efd7a4ecf375ac3</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhUVpaKZpX6CLIuimG0_1Y4_l0k0I_QkEsmnWQpavMnewJVeSM0weIU9dDZN20UVXAvGdD-kcQt5xtuaMbz7t1lMCuxZMlAvOVSNfkBVXrawY7_hLsmKdUFXdSX5OXqe0Y2yjZCtekXMpFRdNy1bk6W7M0eQtejqH8TBBpA57iIluD33EAR9hoHvMW9pjMDbjA1AL0Uxo02d6SSM8IOxp8NQtfjAT-GxGOhfj3hwSDY7CCDbHkGb0Hv09zWFv4pBoHzyU-D34ossY_Bty5syY4O3zeUHuvn39efWjurn9fn11eVNZqepc9Y3ktW2dsdL1rTHghHS8q0VjDbOqsZ0RYKRyciMc65Tl4IbW1GCdbJuSuiAfT945hl8LpKwnTBbG0XgIS9KiYUp1gte8oB_-QXdhib68rlCik2LDG1kocaJs-WaK4PQccTLxoDnTx6X0Th-X0sel9GmpEnr_rF76CYa_kT_TFODLCYDSRSk56mQRvIUBY2lUDwH_5_8NhDOocA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529326153</pqid></control><display><type>article</type><title>Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferreira, Filipe V. ; Otoni, Caio G. ; Lopes, João H. ; de Souza, Lucas P. ; Mei, Lucia H.I. ; Lona, Liliane M.F. ; Lozano, Karen ; Lobo, Anderson O. ; Mattoso, Luiz H.C.</creator><creatorcontrib>Ferreira, Filipe V. ; Otoni, Caio G. ; Lopes, João H. ; de Souza, Lucas P. ; Mei, Lucia H.I. ; Lona, Liliane M.F. ; Lozano, Karen ; Lobo, Anderson O. ; Mattoso, Luiz H.C.</creatorcontrib><description>Electrospun ultrathin polymer fibers hybridized with bioactive ceramics find use in many biomedical applications due to their unique and versatile abilities to modulate structure–performance relationships at the nano–bio interface. These organic–inorganic hybrid fibers present synergies that are otherwise rare, even when the precursors are used individually, such as bioactivity in polymers and stiffness–toughness balance in bioactive ceramics. Despite these unique advantages, a comprehensive and timely review on this important topic is still missing. Herein we describe the most recent and relevant developments on electrospun ultrathin polymer fibers hybridized with bioactive ceramics, with emphasis on bone tissue regeneration. This review addresses the preparation of bioactive ceramics, particularly (nano) hydroxyapatite (HA; nHA) and bioactive glass (BG), which stand out as the ceramics of interest for bone regeneration. The anatomy and mechanical properties of bone as well as fundamental tissue–scaffold interaction mechanisms are covered. The process–structure–property relationships of electrospun ultrathin fibers are discussed in detail from a technical standpoint, as well as fabrication strategies, process variables, characterization methods, and biological requirements (in vitro and in vivo performances). Finally, we highlight the major challenges and outline perspectives to pave the route for the next-generation hybrid materials for bone tissue engineering.
[Display omitted]
•Composite ultrathin fibers denote cutting-edge systems for regenerative medicine.•Bioactive ceramics (BC) are essential for polymer ultrathin fibers to serve as scaffolds in bone tissue engineering.•Electrospinning is reviewed as a method to produce BC-containing ultrathin fibers with fine-tuned morphology.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2020.111853</identifier><identifier>PMID: 33812570</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bioactive glass ; Bioglass ; Biological activity ; Biomedical application ; Biomedical materials ; Bone growth ; Bones ; Ceramic fibers ; Ceramics ; Electrospinning ; Fabrication ; Fibers ; Hydroxyapatite ; In vivo methods and tests ; Materials science ; Mechanical properties ; Polymer nanofibers ; Polymers ; Process variables ; Regeneration ; Regeneration (physiology) ; Reviews ; Stiffness ; Tissue engineering</subject><ispartof>Materials Science & Engineering C, 2021-04, Vol.123, p.111853-111853, Article 111853</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b5314c7fac3fb7aaef23f19425ca0c85c9a2ea38f362f098c1efd7a4ecf375ac3</citedby><cites>FETCH-LOGICAL-c384t-b5314c7fac3fb7aaef23f19425ca0c85c9a2ea38f362f098c1efd7a4ecf375ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0928493120337723$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33812570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Filipe V.</creatorcontrib><creatorcontrib>Otoni, Caio G.</creatorcontrib><creatorcontrib>Lopes, João H.</creatorcontrib><creatorcontrib>de Souza, Lucas P.</creatorcontrib><creatorcontrib>Mei, Lucia H.I.</creatorcontrib><creatorcontrib>Lona, Liliane M.F.</creatorcontrib><creatorcontrib>Lozano, Karen</creatorcontrib><creatorcontrib>Lobo, Anderson O.</creatorcontrib><creatorcontrib>Mattoso, Luiz H.C.</creatorcontrib><title>Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Electrospun ultrathin polymer fibers hybridized with bioactive ceramics find use in many biomedical applications due to their unique and versatile abilities to modulate structure–performance relationships at the nano–bio interface. These organic–inorganic hybrid fibers present synergies that are otherwise rare, even when the precursors are used individually, such as bioactivity in polymers and stiffness–toughness balance in bioactive ceramics. Despite these unique advantages, a comprehensive and timely review on this important topic is still missing. Herein we describe the most recent and relevant developments on electrospun ultrathin polymer fibers hybridized with bioactive ceramics, with emphasis on bone tissue regeneration. This review addresses the preparation of bioactive ceramics, particularly (nano) hydroxyapatite (HA; nHA) and bioactive glass (BG), which stand out as the ceramics of interest for bone regeneration. The anatomy and mechanical properties of bone as well as fundamental tissue–scaffold interaction mechanisms are covered. The process–structure–property relationships of electrospun ultrathin fibers are discussed in detail from a technical standpoint, as well as fabrication strategies, process variables, characterization methods, and biological requirements (in vitro and in vivo performances). Finally, we highlight the major challenges and outline perspectives to pave the route for the next-generation hybrid materials for bone tissue engineering.
[Display omitted]
•Composite ultrathin fibers denote cutting-edge systems for regenerative medicine.•Bioactive ceramics (BC) are essential for polymer ultrathin fibers to serve as scaffolds in bone tissue engineering.•Electrospinning is reviewed as a method to produce BC-containing ultrathin fibers with fine-tuned morphology.</description><subject>Bioactive glass</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomedical application</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Ceramic fibers</subject><subject>Ceramics</subject><subject>Electrospinning</subject><subject>Fabrication</subject><subject>Fibers</subject><subject>Hydroxyapatite</subject><subject>In vivo methods and tests</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Polymer nanofibers</subject><subject>Polymers</subject><subject>Process variables</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Reviews</subject><subject>Stiffness</subject><subject>Tissue engineering</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAUhUVpaKZpX6CLIuimG0_1Y4_l0k0I_QkEsmnWQpavMnewJVeSM0weIU9dDZN20UVXAvGdD-kcQt5xtuaMbz7t1lMCuxZMlAvOVSNfkBVXrawY7_hLsmKdUFXdSX5OXqe0Y2yjZCtekXMpFRdNy1bk6W7M0eQtejqH8TBBpA57iIluD33EAR9hoHvMW9pjMDbjA1AL0Uxo02d6SSM8IOxp8NQtfjAT-GxGOhfj3hwSDY7CCDbHkGb0Hv09zWFv4pBoHzyU-D34ossY_Bty5syY4O3zeUHuvn39efWjurn9fn11eVNZqepc9Y3ktW2dsdL1rTHghHS8q0VjDbOqsZ0RYKRyciMc65Tl4IbW1GCdbJuSuiAfT945hl8LpKwnTBbG0XgIS9KiYUp1gte8oB_-QXdhib68rlCik2LDG1kocaJs-WaK4PQccTLxoDnTx6X0Th-X0sel9GmpEnr_rF76CYa_kT_TFODLCYDSRSk56mQRvIUBY2lUDwH_5_8NhDOocA</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Ferreira, Filipe V.</creator><creator>Otoni, Caio G.</creator><creator>Lopes, João H.</creator><creator>de Souza, Lucas P.</creator><creator>Mei, Lucia H.I.</creator><creator>Lona, Liliane M.F.</creator><creator>Lozano, Karen</creator><creator>Lobo, Anderson O.</creator><creator>Mattoso, Luiz H.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202104</creationdate><title>Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration</title><author>Ferreira, Filipe V. ; Otoni, Caio G. ; Lopes, João H. ; de Souza, Lucas P. ; Mei, Lucia H.I. ; Lona, Liliane M.F. ; Lozano, Karen ; Lobo, Anderson O. ; Mattoso, Luiz H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b5314c7fac3fb7aaef23f19425ca0c85c9a2ea38f362f098c1efd7a4ecf375ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioactive glass</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomedical application</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Ceramic fibers</topic><topic>Ceramics</topic><topic>Electrospinning</topic><topic>Fabrication</topic><topic>Fibers</topic><topic>Hydroxyapatite</topic><topic>In vivo methods and tests</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Polymer nanofibers</topic><topic>Polymers</topic><topic>Process variables</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Reviews</topic><topic>Stiffness</topic><topic>Tissue engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Filipe V.</creatorcontrib><creatorcontrib>Otoni, Caio G.</creatorcontrib><creatorcontrib>Lopes, João H.</creatorcontrib><creatorcontrib>de Souza, Lucas P.</creatorcontrib><creatorcontrib>Mei, Lucia H.I.</creatorcontrib><creatorcontrib>Lona, Liliane M.F.</creatorcontrib><creatorcontrib>Lozano, Karen</creatorcontrib><creatorcontrib>Lobo, Anderson O.</creatorcontrib><creatorcontrib>Mattoso, Luiz H.C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Filipe V.</au><au>Otoni, Caio G.</au><au>Lopes, João H.</au><au>de Souza, Lucas P.</au><au>Mei, Lucia H.I.</au><au>Lona, Liliane M.F.</au><au>Lozano, Karen</au><au>Lobo, Anderson O.</au><au>Mattoso, Luiz H.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2021-04</date><risdate>2021</risdate><volume>123</volume><spage>111853</spage><epage>111853</epage><pages>111853-111853</pages><artnum>111853</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Electrospun ultrathin polymer fibers hybridized with bioactive ceramics find use in many biomedical applications due to their unique and versatile abilities to modulate structure–performance relationships at the nano–bio interface. These organic–inorganic hybrid fibers present synergies that are otherwise rare, even when the precursors are used individually, such as bioactivity in polymers and stiffness–toughness balance in bioactive ceramics. Despite these unique advantages, a comprehensive and timely review on this important topic is still missing. Herein we describe the most recent and relevant developments on electrospun ultrathin polymer fibers hybridized with bioactive ceramics, with emphasis on bone tissue regeneration. This review addresses the preparation of bioactive ceramics, particularly (nano) hydroxyapatite (HA; nHA) and bioactive glass (BG), which stand out as the ceramics of interest for bone regeneration. The anatomy and mechanical properties of bone as well as fundamental tissue–scaffold interaction mechanisms are covered. The process–structure–property relationships of electrospun ultrathin fibers are discussed in detail from a technical standpoint, as well as fabrication strategies, process variables, characterization methods, and biological requirements (in vitro and in vivo performances). Finally, we highlight the major challenges and outline perspectives to pave the route for the next-generation hybrid materials for bone tissue engineering.
[Display omitted]
•Composite ultrathin fibers denote cutting-edge systems for regenerative medicine.•Bioactive ceramics (BC) are essential for polymer ultrathin fibers to serve as scaffolds in bone tissue engineering.•Electrospinning is reviewed as a method to produce BC-containing ultrathin fibers with fine-tuned morphology.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33812570</pmid><doi>10.1016/j.msec.2020.111853</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2021-04, Vol.123, p.111853-111853, Article 111853 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_miscellaneous_2508892141 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bioactive glass Bioglass Biological activity Biomedical application Biomedical materials Bone growth Bones Ceramic fibers Ceramics Electrospinning Fabrication Fibers Hydroxyapatite In vivo methods and tests Materials science Mechanical properties Polymer nanofibers Polymers Process variables Regeneration Regeneration (physiology) Reviews Stiffness Tissue engineering |
title | Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20polymer%20fibers%20hybridized%20with%20bioactive%20ceramics:%20A%20review%20on%20fundamental%20pathways%20of%20electrospinning%20towards%20bone%20regeneration&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Ferreira,%20Filipe%20V.&rft.date=2021-04&rft.volume=123&rft.spage=111853&rft.epage=111853&rft.pages=111853-111853&rft.artnum=111853&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2020.111853&rft_dat=%3Cproquest_cross%3E2508892141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529326153&rft_id=info:pmid/33812570&rft_els_id=S0928493120337723&rfr_iscdi=true |