Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries

Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoroprop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-06, Vol.60 (23), p.12931-12940
Hauptverfasser: Liu, Wenyi, Yi, Chengjun, Li, Linpo, Liu, Shuailei, Gui, Qiuyue, Ba, Deliang, Li, Yuanyuan, Peng, Dongliang, Liu, Jinping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12940
container_issue 23
container_start_page 12931
container_title Angewandte Chemie International Edition
container_volume 60
creator Liu, Wenyi
Yi, Chengjun
Li, Linpo
Liu, Shuailei
Gui, Qiuyue
Ba, Deliang
Li, Yuanyuan
Peng, Dongliang
Liu, Jinping
description Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries. A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte.
doi_str_mv 10.1002/anie.202101537
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2508575582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508575582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMoXqpblxJw42ZqLpPJdOmlaqGooPshTk5qJDOjSQYpbnwEn9EnMaVVwY2bXM7_5SPwI7RPyZASwo5Va2HICKOECi7X0DYVjGZcSr6ezjnnmSwF3UI7ITwlvixJsYm2OJcjSSXdRm_nEOyste0M33Zu3oD_fP-wbVrulIt47KCOPgURsGo1vuidm-NJa6yLXkXQmJ9_Qxqw6XwKI8yW2V3nrF6oYrriqY2Ptm_wqYoRvIWwizaMcgH2VvsA3V-M78-usunN5eTsZJrVOSUyA6NBshyoLABYwbXRkistjVBUp9GDJAVNk5zk0hSqNkyzuiSmloKNdMEH6GipffbdSw8hVo0NNTinWuj6UDFBSiGFKFlCD_-gT13v2_S5RHFGyjwXo0QNl1TtuxA8mOrZ20b5eUVJtWilWrRS_bSSHhystP1DA_oH_64hAaMl8GodzP_RVSfXk_Gv_AsIwp0r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532084459</pqid></control><display><type>article</type><title>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</title><source>Wiley Online Library All Journals</source><creator>Liu, Wenyi ; Yi, Chengjun ; Li, Linpo ; Liu, Shuailei ; Gui, Qiuyue ; Ba, Deliang ; Li, Yuanyuan ; Peng, Dongliang ; Liu, Jinping</creator><creatorcontrib>Liu, Wenyi ; Yi, Chengjun ; Li, Linpo ; Liu, Shuailei ; Gui, Qiuyue ; Ba, Deliang ; Li, Yuanyuan ; Peng, Dongliang ; Liu, Jinping</creatorcontrib><description>Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries. A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202101537</identifier><identifier>PMID: 33797171</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D electrolyte infiltration ; Batteries ; Conductivity ; Electrochemistry ; Electrodes ; Electrolytes ; Fluorides ; Flux density ; High voltage ; Interface stability ; interfacial engineering ; Ion currents ; Lithium ; Lithium batteries ; Molten salt electrolytes ; nanostructured thin-film batteries ; polymer-in-salt electrolytes ; Polymers ; Solid electrolytes ; solid-state lithium batteries ; Titanium dioxide ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Angewandte Chemie International Edition, 2021-06, Vol.60 (23), p.12931-12940</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</citedby><cites>FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</cites><orcidid>0000-0001-6748-8432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202101537$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202101537$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33797171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wenyi</creatorcontrib><creatorcontrib>Yi, Chengjun</creatorcontrib><creatorcontrib>Li, Linpo</creatorcontrib><creatorcontrib>Liu, Shuailei</creatorcontrib><creatorcontrib>Gui, Qiuyue</creatorcontrib><creatorcontrib>Ba, Deliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Peng, Dongliang</creatorcontrib><creatorcontrib>Liu, Jinping</creatorcontrib><title>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries. A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte.</description><subject>3D electrolyte infiltration</subject><subject>Batteries</subject><subject>Conductivity</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fluorides</subject><subject>Flux density</subject><subject>High voltage</subject><subject>Interface stability</subject><subject>interfacial engineering</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Molten salt electrolytes</subject><subject>nanostructured thin-film batteries</subject><subject>polymer-in-salt electrolytes</subject><subject>Polymers</subject><subject>Solid electrolytes</subject><subject>solid-state lithium batteries</subject><subject>Titanium dioxide</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhoMoXqpblxJw42ZqLpPJdOmlaqGooPshTk5qJDOjSQYpbnwEn9EnMaVVwY2bXM7_5SPwI7RPyZASwo5Va2HICKOECi7X0DYVjGZcSr6ezjnnmSwF3UI7ITwlvixJsYm2OJcjSSXdRm_nEOyste0M33Zu3oD_fP-wbVrulIt47KCOPgURsGo1vuidm-NJa6yLXkXQmJ9_Qxqw6XwKI8yW2V3nrF6oYrriqY2Ptm_wqYoRvIWwizaMcgH2VvsA3V-M78-usunN5eTsZJrVOSUyA6NBshyoLABYwbXRkistjVBUp9GDJAVNk5zk0hSqNkyzuiSmloKNdMEH6GipffbdSw8hVo0NNTinWuj6UDFBSiGFKFlCD_-gT13v2_S5RHFGyjwXo0QNl1TtuxA8mOrZ20b5eUVJtWilWrRS_bSSHhystP1DA_oH_64hAaMl8GodzP_RVSfXk_Gv_AsIwp0r</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Liu, Wenyi</creator><creator>Yi, Chengjun</creator><creator>Li, Linpo</creator><creator>Liu, Shuailei</creator><creator>Gui, Qiuyue</creator><creator>Ba, Deliang</creator><creator>Li, Yuanyuan</creator><creator>Peng, Dongliang</creator><creator>Liu, Jinping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6748-8432</orcidid></search><sort><creationdate>20210601</creationdate><title>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</title><author>Liu, Wenyi ; Yi, Chengjun ; Li, Linpo ; Liu, Shuailei ; Gui, Qiuyue ; Ba, Deliang ; Li, Yuanyuan ; Peng, Dongliang ; Liu, Jinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D electrolyte infiltration</topic><topic>Batteries</topic><topic>Conductivity</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fluorides</topic><topic>Flux density</topic><topic>High voltage</topic><topic>Interface stability</topic><topic>interfacial engineering</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Molten salt electrolytes</topic><topic>nanostructured thin-film batteries</topic><topic>polymer-in-salt electrolytes</topic><topic>Polymers</topic><topic>Solid electrolytes</topic><topic>solid-state lithium batteries</topic><topic>Titanium dioxide</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenyi</creatorcontrib><creatorcontrib>Yi, Chengjun</creatorcontrib><creatorcontrib>Li, Linpo</creatorcontrib><creatorcontrib>Liu, Shuailei</creatorcontrib><creatorcontrib>Gui, Qiuyue</creatorcontrib><creatorcontrib>Ba, Deliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Peng, Dongliang</creatorcontrib><creatorcontrib>Liu, Jinping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenyi</au><au>Yi, Chengjun</au><au>Li, Linpo</au><au>Liu, Shuailei</au><au>Gui, Qiuyue</au><au>Ba, Deliang</au><au>Li, Yuanyuan</au><au>Peng, Dongliang</au><au>Liu, Jinping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>60</volume><issue>23</issue><spage>12931</spage><epage>12940</epage><pages>12931-12940</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries. A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33797171</pmid><doi>10.1002/anie.202101537</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-6748-8432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-06, Vol.60 (23), p.12931-12940
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2508575582
source Wiley Online Library All Journals
subjects 3D electrolyte infiltration
Batteries
Conductivity
Electrochemistry
Electrodes
Electrolytes
Fluorides
Flux density
High voltage
Interface stability
interfacial engineering
Ion currents
Lithium
Lithium batteries
Molten salt electrolytes
nanostructured thin-film batteries
polymer-in-salt electrolytes
Polymers
Solid electrolytes
solid-state lithium batteries
Titanium dioxide
Vinylidene
Vinylidene fluoride
title Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Polymer%E2%80%90in%E2%80%90Salt%20Electrolyte%20and%20Fully%20Infiltrated%203D%20Electrode%20for%20Integrated%20Solid%E2%80%90State%20Lithium%20Batteries&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Wenyi&rft.date=2021-06-01&rft.volume=60&rft.issue=23&rft.spage=12931&rft.epage=12940&rft.pages=12931-12940&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202101537&rft_dat=%3Cproquest_cross%3E2508575582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532084459&rft_id=info:pmid/33797171&rfr_iscdi=true