Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries
Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoroprop...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-06, Vol.60 (23), p.12931-12940 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12940 |
---|---|
container_issue | 23 |
container_start_page | 12931 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Liu, Wenyi Yi, Chengjun Li, Linpo Liu, Shuailei Gui, Qiuyue Ba, Deliang Li, Yuanyuan Peng, Dongliang Liu, Jinping |
description | Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries.
A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte. |
doi_str_mv | 10.1002/anie.202101537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2508575582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508575582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMoXqpblxJw42ZqLpPJdOmlaqGooPshTk5qJDOjSQYpbnwEn9EnMaVVwY2bXM7_5SPwI7RPyZASwo5Va2HICKOECi7X0DYVjGZcSr6ezjnnmSwF3UI7ITwlvixJsYm2OJcjSSXdRm_nEOyste0M33Zu3oD_fP-wbVrulIt47KCOPgURsGo1vuidm-NJa6yLXkXQmJ9_Qxqw6XwKI8yW2V3nrF6oYrriqY2Ptm_wqYoRvIWwizaMcgH2VvsA3V-M78-usunN5eTsZJrVOSUyA6NBshyoLABYwbXRkistjVBUp9GDJAVNk5zk0hSqNkyzuiSmloKNdMEH6GipffbdSw8hVo0NNTinWuj6UDFBSiGFKFlCD_-gT13v2_S5RHFGyjwXo0QNl1TtuxA8mOrZ20b5eUVJtWilWrRS_bSSHhystP1DA_oH_64hAaMl8GodzP_RVSfXk_Gv_AsIwp0r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532084459</pqid></control><display><type>article</type><title>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</title><source>Wiley Online Library All Journals</source><creator>Liu, Wenyi ; Yi, Chengjun ; Li, Linpo ; Liu, Shuailei ; Gui, Qiuyue ; Ba, Deliang ; Li, Yuanyuan ; Peng, Dongliang ; Liu, Jinping</creator><creatorcontrib>Liu, Wenyi ; Yi, Chengjun ; Li, Linpo ; Liu, Shuailei ; Gui, Qiuyue ; Ba, Deliang ; Li, Yuanyuan ; Peng, Dongliang ; Liu, Jinping</creatorcontrib><description>Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries.
A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202101537</identifier><identifier>PMID: 33797171</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D electrolyte infiltration ; Batteries ; Conductivity ; Electrochemistry ; Electrodes ; Electrolytes ; Fluorides ; Flux density ; High voltage ; Interface stability ; interfacial engineering ; Ion currents ; Lithium ; Lithium batteries ; Molten salt electrolytes ; nanostructured thin-film batteries ; polymer-in-salt electrolytes ; Polymers ; Solid electrolytes ; solid-state lithium batteries ; Titanium dioxide ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Angewandte Chemie International Edition, 2021-06, Vol.60 (23), p.12931-12940</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</citedby><cites>FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</cites><orcidid>0000-0001-6748-8432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202101537$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202101537$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33797171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wenyi</creatorcontrib><creatorcontrib>Yi, Chengjun</creatorcontrib><creatorcontrib>Li, Linpo</creatorcontrib><creatorcontrib>Liu, Shuailei</creatorcontrib><creatorcontrib>Gui, Qiuyue</creatorcontrib><creatorcontrib>Ba, Deliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Peng, Dongliang</creatorcontrib><creatorcontrib>Liu, Jinping</creatorcontrib><title>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries.
A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte.</description><subject>3D electrolyte infiltration</subject><subject>Batteries</subject><subject>Conductivity</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fluorides</subject><subject>Flux density</subject><subject>High voltage</subject><subject>Interface stability</subject><subject>interfacial engineering</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Molten salt electrolytes</subject><subject>nanostructured thin-film batteries</subject><subject>polymer-in-salt electrolytes</subject><subject>Polymers</subject><subject>Solid electrolytes</subject><subject>solid-state lithium batteries</subject><subject>Titanium dioxide</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhoMoXqpblxJw42ZqLpPJdOmlaqGooPshTk5qJDOjSQYpbnwEn9EnMaVVwY2bXM7_5SPwI7RPyZASwo5Va2HICKOECi7X0DYVjGZcSr6ezjnnmSwF3UI7ITwlvixJsYm2OJcjSSXdRm_nEOyste0M33Zu3oD_fP-wbVrulIt47KCOPgURsGo1vuidm-NJa6yLXkXQmJ9_Qxqw6XwKI8yW2V3nrF6oYrriqY2Ptm_wqYoRvIWwizaMcgH2VvsA3V-M78-usunN5eTsZJrVOSUyA6NBshyoLABYwbXRkistjVBUp9GDJAVNk5zk0hSqNkyzuiSmloKNdMEH6GipffbdSw8hVo0NNTinWuj6UDFBSiGFKFlCD_-gT13v2_S5RHFGyjwXo0QNl1TtuxA8mOrZ20b5eUVJtWilWrRS_bSSHhystP1DA_oH_64hAaMl8GodzP_RVSfXk_Gv_AsIwp0r</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Liu, Wenyi</creator><creator>Yi, Chengjun</creator><creator>Li, Linpo</creator><creator>Liu, Shuailei</creator><creator>Gui, Qiuyue</creator><creator>Ba, Deliang</creator><creator>Li, Yuanyuan</creator><creator>Peng, Dongliang</creator><creator>Liu, Jinping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6748-8432</orcidid></search><sort><creationdate>20210601</creationdate><title>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</title><author>Liu, Wenyi ; Yi, Chengjun ; Li, Linpo ; Liu, Shuailei ; Gui, Qiuyue ; Ba, Deliang ; Li, Yuanyuan ; Peng, Dongliang ; Liu, Jinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-efde724e176ee263dfd73ad7f5a1d6eeb706173a4047f6acf2d2c80fc7529d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D electrolyte infiltration</topic><topic>Batteries</topic><topic>Conductivity</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fluorides</topic><topic>Flux density</topic><topic>High voltage</topic><topic>Interface stability</topic><topic>interfacial engineering</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Molten salt electrolytes</topic><topic>nanostructured thin-film batteries</topic><topic>polymer-in-salt electrolytes</topic><topic>Polymers</topic><topic>Solid electrolytes</topic><topic>solid-state lithium batteries</topic><topic>Titanium dioxide</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenyi</creatorcontrib><creatorcontrib>Yi, Chengjun</creatorcontrib><creatorcontrib>Li, Linpo</creatorcontrib><creatorcontrib>Liu, Shuailei</creatorcontrib><creatorcontrib>Gui, Qiuyue</creatorcontrib><creatorcontrib>Ba, Deliang</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Peng, Dongliang</creatorcontrib><creatorcontrib>Liu, Jinping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenyi</au><au>Yi, Chengjun</au><au>Li, Linpo</au><au>Liu, Shuailei</au><au>Gui, Qiuyue</au><au>Ba, Deliang</au><au>Li, Yuanyuan</au><au>Peng, Dongliang</au><au>Liu, Jinping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>60</volume><issue>23</issue><spage>12931</spage><epage>12940</epage><pages>12931-12940</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Solid‐state lithium batteries (SSLBs) are promising owing to enhanced safety and high energy density but plagued by the relatively low ionic conductivity of solid‐state electrolytes and large electrolyte–electrode interfacial resistance. Herein, we design a poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP)‐based polymer‐in‐salt solid electrolyte (PISSE) with high room‐temperature ionic conductivity (1.24×10−4 S cm−1) and construct a model integrated TiO2/Li SSLB with 3D fully infiltration of solid electrolyte. With forming aggregated ion clusters, unique ionic channels are generated in the PISSE, providing much faster Li+ transport than common polymer electrolytes. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, with performance close to liquid electrolyte. A pouch cell made of 2 SSLB units in series shows high voltage plateau (3.7 V) and volumetric energy density comparable to many commercial thin‐film batteries.
A PVDF‐HFP‐based polymer‐in‐salt solid electrolyte (PISSE) with high ionic conductivity at room temperature and a solid‐state lithium battery (SSLB) with 3D fully infiltration of PISSE is developed. The integrated device achieves maximized interfacial contact and electrochemical and mechanical stability, presenting high performance close to that with liquid electrolyte.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33797171</pmid><doi>10.1002/anie.202101537</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-6748-8432</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-06, Vol.60 (23), p.12931-12940 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2508575582 |
source | Wiley Online Library All Journals |
subjects | 3D electrolyte infiltration Batteries Conductivity Electrochemistry Electrodes Electrolytes Fluorides Flux density High voltage Interface stability interfacial engineering Ion currents Lithium Lithium batteries Molten salt electrolytes nanostructured thin-film batteries polymer-in-salt electrolytes Polymers Solid electrolytes solid-state lithium batteries Titanium dioxide Vinylidene Vinylidene fluoride |
title | Designing Polymer‐in‐Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid‐State Lithium Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Polymer%E2%80%90in%E2%80%90Salt%20Electrolyte%20and%20Fully%20Infiltrated%203D%20Electrode%20for%20Integrated%20Solid%E2%80%90State%20Lithium%20Batteries&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Wenyi&rft.date=2021-06-01&rft.volume=60&rft.issue=23&rft.spage=12931&rft.epage=12940&rft.pages=12931-12940&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202101537&rft_dat=%3Cproquest_cross%3E2508575582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532084459&rft_id=info:pmid/33797171&rfr_iscdi=true |