Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces

This report investigates the influence of microstructure topography on the restitution coefficient, maximum spreading diameter, and contact time of oblique drop impacts on superhydrophobic surfaces. The five surfaces tested allow for comparison of open- versus closed-cell structures, feature size an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2021-04, Vol.37 (15), p.4678-4689
Hauptverfasser: Aboud, Damon G. K, Kietzig, Anne-Marie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4689
container_issue 15
container_start_page 4678
container_title Langmuir
container_volume 37
creator Aboud, Damon G. K
Kietzig, Anne-Marie
description This report investigates the influence of microstructure topography on the restitution coefficient, maximum spreading diameter, and contact time of oblique drop impacts on superhydrophobic surfaces. The five surfaces tested allow for comparison of open- versus closed-cell structures, feature size and spacing, and hierarchical versus nanoscale-only surface structures. By decoupling the restitution coefficient into a normal (εn) and tangential component (εt), it is demonstrated that both εn and εt are largely independent of the microstructure topography. Instead, the restitution coefficient is governed almost exclusively by the normal Weber number. Next, a new model is presented that relates the maximum spreading diameter to an adhesion coefficient that characterizes the overall adhesive properties of the superhydrophobic microstructure during drop rebounding. Through this analysis, we discovered that surface geometries with greater microstructure roughness (i.e., overall surface area) promote a higher maximum spreading diameter than flatter geometries. Furthermore, the contact time of drop impacts on flat surfaces is positively correlated with the impact velocity due to penetration of the liquid into the porous nanostructure. However, this trend reverses for oblique impacts due to the presence of stretched rebounding behavior. Finally, substrates patterned with sparse pillar microstructures can exhibit pancake bouncing behavior, resulting in extremely low contact times. This unique bouncing mechanism also significantly influences the restitution coefficient and spreading diameter of oblique impacts.
doi_str_mv 10.1021/acs.langmuir.1c00472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2508574703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508574703</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-49260c8262b50412109a204b1913857cf593f533f0ded85ff92be1beb0ad4ef13</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwDxDKyJLy_JGmHlHLR6WiDpQ5chy7TUniYMdD_j2O2jIyWbbOvX7vIHSPYYqB4Cch3bQSza72pZ1iCcBScoHGOCEQJ3OSXqIxpIzGKZvREbpx7gAAnDJ-jUaUpjwlMzZG36tGV141UkVGRx-ltMZ11svOWxVtTWt2VrT7PjJN1O1VtMmr8seraFW3QnbRsm9EXUo3ZJfWtG7gPn2r7L4vwn1v8lKGB6uFVO4WXWlROXV3Oifo6_Vlu3iP15u31eJ5HQvKWRczTmYg52RG8gQYJhi4IMByzDGdJ6nUCac6oVRDoYp5ojUnucK5ykEUTGlMJ-jx2NtaE4Z1XVaXTqoq2FLGu4wkEHpYCjSg7IgOezurdNbasha2zzBkg-YsaM7OmrOT5hB7OP3g81oVf6Gz1wDAERjiB-NtExb-v_MXqYGOGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508574703</pqid></control><display><type>article</type><title>Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces</title><source>American Chemical Society Journals</source><creator>Aboud, Damon G. K ; Kietzig, Anne-Marie</creator><creatorcontrib>Aboud, Damon G. K ; Kietzig, Anne-Marie</creatorcontrib><description>This report investigates the influence of microstructure topography on the restitution coefficient, maximum spreading diameter, and contact time of oblique drop impacts on superhydrophobic surfaces. The five surfaces tested allow for comparison of open- versus closed-cell structures, feature size and spacing, and hierarchical versus nanoscale-only surface structures. By decoupling the restitution coefficient into a normal (εn) and tangential component (εt), it is demonstrated that both εn and εt are largely independent of the microstructure topography. Instead, the restitution coefficient is governed almost exclusively by the normal Weber number. Next, a new model is presented that relates the maximum spreading diameter to an adhesion coefficient that characterizes the overall adhesive properties of the superhydrophobic microstructure during drop rebounding. Through this analysis, we discovered that surface geometries with greater microstructure roughness (i.e., overall surface area) promote a higher maximum spreading diameter than flatter geometries. Furthermore, the contact time of drop impacts on flat surfaces is positively correlated with the impact velocity due to penetration of the liquid into the porous nanostructure. However, this trend reverses for oblique impacts due to the presence of stretched rebounding behavior. Finally, substrates patterned with sparse pillar microstructures can exhibit pancake bouncing behavior, resulting in extremely low contact times. This unique bouncing mechanism also significantly influences the restitution coefficient and spreading diameter of oblique impacts.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.1c00472</identifier><identifier>PMID: 33797264</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2021-04, Vol.37 (15), p.4678-4689</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-49260c8262b50412109a204b1913857cf593f533f0ded85ff92be1beb0ad4ef13</citedby><cites>FETCH-LOGICAL-a394t-49260c8262b50412109a204b1913857cf593f533f0ded85ff92be1beb0ad4ef13</cites><orcidid>0000-0001-7491-5826 ; 0000-0002-5978-8184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.1c00472$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.1c00472$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33797264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboud, Damon G. K</creatorcontrib><creatorcontrib>Kietzig, Anne-Marie</creatorcontrib><title>Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This report investigates the influence of microstructure topography on the restitution coefficient, maximum spreading diameter, and contact time of oblique drop impacts on superhydrophobic surfaces. The five surfaces tested allow for comparison of open- versus closed-cell structures, feature size and spacing, and hierarchical versus nanoscale-only surface structures. By decoupling the restitution coefficient into a normal (εn) and tangential component (εt), it is demonstrated that both εn and εt are largely independent of the microstructure topography. Instead, the restitution coefficient is governed almost exclusively by the normal Weber number. Next, a new model is presented that relates the maximum spreading diameter to an adhesion coefficient that characterizes the overall adhesive properties of the superhydrophobic microstructure during drop rebounding. Through this analysis, we discovered that surface geometries with greater microstructure roughness (i.e., overall surface area) promote a higher maximum spreading diameter than flatter geometries. Furthermore, the contact time of drop impacts on flat surfaces is positively correlated with the impact velocity due to penetration of the liquid into the porous nanostructure. However, this trend reverses for oblique impacts due to the presence of stretched rebounding behavior. Finally, substrates patterned with sparse pillar microstructures can exhibit pancake bouncing behavior, resulting in extremely low contact times. This unique bouncing mechanism also significantly influences the restitution coefficient and spreading diameter of oblique impacts.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EoqXwDxDKyJLy_JGmHlHLR6WiDpQ5chy7TUniYMdD_j2O2jIyWbbOvX7vIHSPYYqB4Cch3bQSza72pZ1iCcBScoHGOCEQJ3OSXqIxpIzGKZvREbpx7gAAnDJ-jUaUpjwlMzZG36tGV141UkVGRx-ltMZ11svOWxVtTWt2VrT7PjJN1O1VtMmr8seraFW3QnbRsm9EXUo3ZJfWtG7gPn2r7L4vwn1v8lKGB6uFVO4WXWlROXV3Oifo6_Vlu3iP15u31eJ5HQvKWRczTmYg52RG8gQYJhi4IMByzDGdJ6nUCac6oVRDoYp5ojUnucK5ykEUTGlMJ-jx2NtaE4Z1XVaXTqoq2FLGu4wkEHpYCjSg7IgOezurdNbasha2zzBkg-YsaM7OmrOT5hB7OP3g81oVf6Gz1wDAERjiB-NtExb-v_MXqYGOGA</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Aboud, Damon G. K</creator><creator>Kietzig, Anne-Marie</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7491-5826</orcidid><orcidid>https://orcid.org/0000-0002-5978-8184</orcidid></search><sort><creationdate>20210420</creationdate><title>Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces</title><author>Aboud, Damon G. K ; Kietzig, Anne-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-49260c8262b50412109a204b1913857cf593f533f0ded85ff92be1beb0ad4ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboud, Damon G. K</creatorcontrib><creatorcontrib>Kietzig, Anne-Marie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboud, Damon G. K</au><au>Kietzig, Anne-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-04-20</date><risdate>2021</risdate><volume>37</volume><issue>15</issue><spage>4678</spage><epage>4689</epage><pages>4678-4689</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>This report investigates the influence of microstructure topography on the restitution coefficient, maximum spreading diameter, and contact time of oblique drop impacts on superhydrophobic surfaces. The five surfaces tested allow for comparison of open- versus closed-cell structures, feature size and spacing, and hierarchical versus nanoscale-only surface structures. By decoupling the restitution coefficient into a normal (εn) and tangential component (εt), it is demonstrated that both εn and εt are largely independent of the microstructure topography. Instead, the restitution coefficient is governed almost exclusively by the normal Weber number. Next, a new model is presented that relates the maximum spreading diameter to an adhesion coefficient that characterizes the overall adhesive properties of the superhydrophobic microstructure during drop rebounding. Through this analysis, we discovered that surface geometries with greater microstructure roughness (i.e., overall surface area) promote a higher maximum spreading diameter than flatter geometries. Furthermore, the contact time of drop impacts on flat surfaces is positively correlated with the impact velocity due to penetration of the liquid into the porous nanostructure. However, this trend reverses for oblique impacts due to the presence of stretched rebounding behavior. Finally, substrates patterned with sparse pillar microstructures can exhibit pancake bouncing behavior, resulting in extremely low contact times. This unique bouncing mechanism also significantly influences the restitution coefficient and spreading diameter of oblique impacts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33797264</pmid><doi>10.1021/acs.langmuir.1c00472</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7491-5826</orcidid><orcidid>https://orcid.org/0000-0002-5978-8184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2021-04, Vol.37 (15), p.4678-4689
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2508574703
source American Chemical Society Journals
title Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Microstructure%20Topography%20on%20the%20Oblique%20Impact%20Dynamics%20of%20Drops%20on%20Superhydrophobic%20Surfaces&rft.jtitle=Langmuir&rft.au=Aboud,%20Damon%20G.%20K&rft.date=2021-04-20&rft.volume=37&rft.issue=15&rft.spage=4678&rft.epage=4689&rft.pages=4678-4689&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.1c00472&rft_dat=%3Cproquest_cross%3E2508574703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508574703&rft_id=info:pmid/33797264&rfr_iscdi=true