Solid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization

Enhancing the electrochemical performance of batteries, including the lifespan, energy, and power densities, is an everlasting quest for the rechargeable battery community. However, the dynamic and coupled (electro)chemical processes that occur in the electrode materials as well as at the electrode/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (50), p.e2005878-n/a
Hauptverfasser: Liu, Xiangsi, Liang, Ziteng, Xiang, Yuxuan, Lin, Min, Li, Qi, Liu, Zigeng, Zhong, Guiming, Fu, Riqiang, Yang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e2005878
container_title Advanced materials (Weinheim)
container_volume 33
creator Liu, Xiangsi
Liang, Ziteng
Xiang, Yuxuan
Lin, Min
Li, Qi
Liu, Zigeng
Zhong, Guiming
Fu, Riqiang
Yang, Yong
description Enhancing the electrochemical performance of batteries, including the lifespan, energy, and power densities, is an everlasting quest for the rechargeable battery community. However, the dynamic and coupled (electro)chemical processes that occur in the electrode materials as well as at the electrode/electrolyte interfaces complicate the investigation of their working and decay mechanisms. Herein, the recent developments and applications of solid‐state nuclear magnetic resonance (ssNMR) and magnetic resonance imaging (MRI) techniques in Li/Na batteries are reviewed. Several typical cases including the applications of NMR spectroscopy for the investigation of the pristine structure and the dynamic structural evolution of materials are first emphasized. The NMR applications in analyzing the solid electrolyte interfaces (SEI) on the electrode are further concluded, involving the identification of SEI components and investigation of ionic motion through the interfaces. Beyond, the new development of in situ NMR and MRI techniques are highlighted, including their advantages, challenges, applications and the design principle of in situ cell. In the end, a prospect about how to use ssNMR in battery research from the perspectives of materials, interface, and in situ NMR, aiming at obtaining deeper insight of batteries with the assistance of ssNMR is represented. The complex and coupled (electro) chemical processes complicate the investigation of the working and decay mechanisms of batteries. Solid‐state NMR (ssNMR) and magnetic resonance imaging techniques exhibit unique capability in studying both the local environment and ionic dynamic issues in electrochemi cal energy materials and devices, including three key aspects: electrode/electrolyte materials, electrode/electrolyte interfaces, and in situ ssNMR.
doi_str_mv 10.1002/adma.202005878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507670125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507670125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4398-1d65048ad0f2a7027a53ecea11df884d6fc524a2b35bb4b99298c5942417746c3</originalsourceid><addsrcrecordid>eNqFkc2O0zAUhS0EYsrAliWyxIbFpHP9G5tdKX-V2kGawtq6cRyRUZoUOxEqKx6BZ-RJcOkwSGxY3bP4ztHVOYQ8ZTBnAPwS6x3OOXAAZUpzj8yY4qyQYNV9MgMrVGG1NGfkUUo3AGA16IfkTIjSGCHZjPTboWvrn99_bEccA73aXFPsa7q5XtHtPvgxDskP-wNthkjX7eUV0lc4jiG2Ib2kGzwq7NIFXfVZNujDxW__qqfbdpzo8jNG9EfqG47t0D8mD5rMhye395x8evvm4_J9sf7wbrVcrAsvhTUFq7UCabCGhmMJvEQlgg_IWN0YI2vdeMUl8kqoqpKVtdwar6zkkpWl1F6ckxen3H0cvkwhjW7XJh-6DvswTMlxBaUugXGV0ef_oDfDFPv8neM69yg0B5Gp-YnyuZEUQ-P2sd1hPDgG7riEOy7h7pbIhme3sVO1C_Ud_qf6DNgT8LXtwuE_cW7xerP4G_4LzUuT0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609536203</pqid></control><display><type>article</type><title>Solid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Xiangsi ; Liang, Ziteng ; Xiang, Yuxuan ; Lin, Min ; Li, Qi ; Liu, Zigeng ; Zhong, Guiming ; Fu, Riqiang ; Yang, Yong</creator><creatorcontrib>Liu, Xiangsi ; Liang, Ziteng ; Xiang, Yuxuan ; Lin, Min ; Li, Qi ; Liu, Zigeng ; Zhong, Guiming ; Fu, Riqiang ; Yang, Yong</creatorcontrib><description>Enhancing the electrochemical performance of batteries, including the lifespan, energy, and power densities, is an everlasting quest for the rechargeable battery community. However, the dynamic and coupled (electro)chemical processes that occur in the electrode materials as well as at the electrode/electrolyte interfaces complicate the investigation of their working and decay mechanisms. Herein, the recent developments and applications of solid‐state nuclear magnetic resonance (ssNMR) and magnetic resonance imaging (MRI) techniques in Li/Na batteries are reviewed. Several typical cases including the applications of NMR spectroscopy for the investigation of the pristine structure and the dynamic structural evolution of materials are first emphasized. The NMR applications in analyzing the solid electrolyte interfaces (SEI) on the electrode are further concluded, involving the identification of SEI components and investigation of ionic motion through the interfaces. Beyond, the new development of in situ NMR and MRI techniques are highlighted, including their advantages, challenges, applications and the design principle of in situ cell. In the end, a prospect about how to use ssNMR in battery research from the perspectives of materials, interface, and in situ NMR, aiming at obtaining deeper insight of batteries with the assistance of ssNMR is represented. The complex and coupled (electro) chemical processes complicate the investigation of the working and decay mechanisms of batteries. Solid‐state NMR (ssNMR) and magnetic resonance imaging techniques exhibit unique capability in studying both the local environment and ionic dynamic issues in electrochemi cal energy materials and devices, including three key aspects: electrode/electrolyte materials, electrode/electrolyte interfaces, and in situ ssNMR.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202005878</identifier><identifier>PMID: 33788341</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Chemical reactions ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; in situ NMR ; lithium‐ion batteries ; Magnetic resonance imaging ; Materials science ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Rechargeable batteries ; sodium‐ion batteries ; solid electrolyte interfaces ; Solid electrolytes ; solid‐state NMR ; Spectrum analysis</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (50), p.e2005878-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4398-1d65048ad0f2a7027a53ecea11df884d6fc524a2b35bb4b99298c5942417746c3</citedby><cites>FETCH-LOGICAL-c4398-1d65048ad0f2a7027a53ecea11df884d6fc524a2b35bb4b99298c5942417746c3</cites><orcidid>0000-0002-9928-7165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202005878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202005878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33788341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiangsi</creatorcontrib><creatorcontrib>Liang, Ziteng</creatorcontrib><creatorcontrib>Xiang, Yuxuan</creatorcontrib><creatorcontrib>Lin, Min</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Zigeng</creatorcontrib><creatorcontrib>Zhong, Guiming</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><title>Solid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Enhancing the electrochemical performance of batteries, including the lifespan, energy, and power densities, is an everlasting quest for the rechargeable battery community. However, the dynamic and coupled (electro)chemical processes that occur in the electrode materials as well as at the electrode/electrolyte interfaces complicate the investigation of their working and decay mechanisms. Herein, the recent developments and applications of solid‐state nuclear magnetic resonance (ssNMR) and magnetic resonance imaging (MRI) techniques in Li/Na batteries are reviewed. Several typical cases including the applications of NMR spectroscopy for the investigation of the pristine structure and the dynamic structural evolution of materials are first emphasized. The NMR applications in analyzing the solid electrolyte interfaces (SEI) on the electrode are further concluded, involving the identification of SEI components and investigation of ionic motion through the interfaces. Beyond, the new development of in situ NMR and MRI techniques are highlighted, including their advantages, challenges, applications and the design principle of in situ cell. In the end, a prospect about how to use ssNMR in battery research from the perspectives of materials, interface, and in situ NMR, aiming at obtaining deeper insight of batteries with the assistance of ssNMR is represented. The complex and coupled (electro) chemical processes complicate the investigation of the working and decay mechanisms of batteries. Solid‐state NMR (ssNMR) and magnetic resonance imaging techniques exhibit unique capability in studying both the local environment and ionic dynamic issues in electrochemi cal energy materials and devices, including three key aspects: electrode/electrolyte materials, electrode/electrolyte interfaces, and in situ ssNMR.</description><subject>Batteries</subject><subject>Chemical reactions</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>in situ NMR</subject><subject>lithium‐ion batteries</subject><subject>Magnetic resonance imaging</subject><subject>Materials science</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Rechargeable batteries</subject><subject>sodium‐ion batteries</subject><subject>solid electrolyte interfaces</subject><subject>Solid electrolytes</subject><subject>solid‐state NMR</subject><subject>Spectrum analysis</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc2O0zAUhS0EYsrAliWyxIbFpHP9G5tdKX-V2kGawtq6cRyRUZoUOxEqKx6BZ-RJcOkwSGxY3bP4ztHVOYQ8ZTBnAPwS6x3OOXAAZUpzj8yY4qyQYNV9MgMrVGG1NGfkUUo3AGA16IfkTIjSGCHZjPTboWvrn99_bEccA73aXFPsa7q5XtHtPvgxDskP-wNthkjX7eUV0lc4jiG2Ib2kGzwq7NIFXfVZNujDxW__qqfbdpzo8jNG9EfqG47t0D8mD5rMhye395x8evvm4_J9sf7wbrVcrAsvhTUFq7UCabCGhmMJvEQlgg_IWN0YI2vdeMUl8kqoqpKVtdwar6zkkpWl1F6ckxen3H0cvkwhjW7XJh-6DvswTMlxBaUugXGV0ef_oDfDFPv8neM69yg0B5Gp-YnyuZEUQ-P2sd1hPDgG7riEOy7h7pbIhme3sVO1C_Ud_qf6DNgT8LXtwuE_cW7xerP4G_4LzUuT0A</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Xiangsi</creator><creator>Liang, Ziteng</creator><creator>Xiang, Yuxuan</creator><creator>Lin, Min</creator><creator>Li, Qi</creator><creator>Liu, Zigeng</creator><creator>Zhong, Guiming</creator><creator>Fu, Riqiang</creator><creator>Yang, Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9928-7165</orcidid></search><sort><creationdate>20211201</creationdate><title>Solid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization</title><author>Liu, Xiangsi ; Liang, Ziteng ; Xiang, Yuxuan ; Lin, Min ; Li, Qi ; Liu, Zigeng ; Zhong, Guiming ; Fu, Riqiang ; Yang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4398-1d65048ad0f2a7027a53ecea11df884d6fc524a2b35bb4b99298c5942417746c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Chemical reactions</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>in situ NMR</topic><topic>lithium‐ion batteries</topic><topic>Magnetic resonance imaging</topic><topic>Materials science</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Rechargeable batteries</topic><topic>sodium‐ion batteries</topic><topic>solid electrolyte interfaces</topic><topic>Solid electrolytes</topic><topic>solid‐state NMR</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangsi</creatorcontrib><creatorcontrib>Liang, Ziteng</creatorcontrib><creatorcontrib>Xiang, Yuxuan</creatorcontrib><creatorcontrib>Lin, Min</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Zigeng</creatorcontrib><creatorcontrib>Zhong, Guiming</creatorcontrib><creatorcontrib>Fu, Riqiang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangsi</au><au>Liang, Ziteng</au><au>Xiang, Yuxuan</au><au>Lin, Min</au><au>Li, Qi</au><au>Liu, Zigeng</au><au>Zhong, Guiming</au><au>Fu, Riqiang</au><au>Yang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>50</issue><spage>e2005878</spage><epage>n/a</epage><pages>e2005878-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Enhancing the electrochemical performance of batteries, including the lifespan, energy, and power densities, is an everlasting quest for the rechargeable battery community. However, the dynamic and coupled (electro)chemical processes that occur in the electrode materials as well as at the electrode/electrolyte interfaces complicate the investigation of their working and decay mechanisms. Herein, the recent developments and applications of solid‐state nuclear magnetic resonance (ssNMR) and magnetic resonance imaging (MRI) techniques in Li/Na batteries are reviewed. Several typical cases including the applications of NMR spectroscopy for the investigation of the pristine structure and the dynamic structural evolution of materials are first emphasized. The NMR applications in analyzing the solid electrolyte interfaces (SEI) on the electrode are further concluded, involving the identification of SEI components and investigation of ionic motion through the interfaces. Beyond, the new development of in situ NMR and MRI techniques are highlighted, including their advantages, challenges, applications and the design principle of in situ cell. In the end, a prospect about how to use ssNMR in battery research from the perspectives of materials, interface, and in situ NMR, aiming at obtaining deeper insight of batteries with the assistance of ssNMR is represented. The complex and coupled (electro) chemical processes complicate the investigation of the working and decay mechanisms of batteries. Solid‐state NMR (ssNMR) and magnetic resonance imaging techniques exhibit unique capability in studying both the local environment and ionic dynamic issues in electrochemi cal energy materials and devices, including three key aspects: electrode/electrolyte materials, electrode/electrolyte interfaces, and in situ ssNMR.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33788341</pmid><doi>10.1002/adma.202005878</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9928-7165</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-12, Vol.33 (50), p.e2005878-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2507670125
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Chemical reactions
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
in situ NMR
lithium‐ion batteries
Magnetic resonance imaging
Materials science
NMR
NMR spectroscopy
Nuclear magnetic resonance
Rechargeable batteries
sodium‐ion batteries
solid electrolyte interfaces
Solid electrolytes
solid‐state NMR
Spectrum analysis
title Solid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%E2%80%90State%20NMR%20and%20MRI%20Spectroscopy%20for%20Li/Na%20Batteries:%20Materials,%20Interface,%20and%20In%20Situ%20Characterization&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Xiangsi&rft.date=2021-12-01&rft.volume=33&rft.issue=50&rft.spage=e2005878&rft.epage=n/a&rft.pages=e2005878-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202005878&rft_dat=%3Cproquest_cross%3E2507670125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609536203&rft_id=info:pmid/33788341&rfr_iscdi=true