Fully Spin-Transparent Magnetic Interfaces Enabled by the Insertion of a Thin Paramagnetic NiO Layer

Spin backflow and spin-memory loss have been well established to considerably lower the interfacial spin transmissivity of metallic magnetic interfaces and thus the energy efficiency of spin-orbit torque technologies. Here, we report that spin backflow and spin-memory loss at Pt-based heavy metal-fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-03, Vol.126 (10), p.107204-107204, Article 107204
Hauptverfasser: Zhu, Lijun, Zhu, Lujun, Buhrman, Robert A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spin backflow and spin-memory loss have been well established to considerably lower the interfacial spin transmissivity of metallic magnetic interfaces and thus the energy efficiency of spin-orbit torque technologies. Here, we report that spin backflow and spin-memory loss at Pt-based heavy metal-ferromagnet interfaces can be effectively eliminated by inserting an insulating paramagnetic NiO layer of optimum thickness. The latter enables the thermal magnon-mediated essentially unity spin-current transmission at room temperature due to considerably enhanced effective spin-mixing conductance of the interface. As a result, we obtain dampinglike spin-orbit torque efficiency per unit current density of up to 0.8 as detected by the standard technology ferromagnet FeCoB and others, which reaches the expected upper-limit spin Hall ratio of Pt. We establish that Pt/NiO and Pt-Hf/NiO are two energy-efficient, integration-friendly, and high-endurance spin-current generators that provide >100 times greater energy efficiency than sputter-deposited topological insulators BiSb and BiSe. Our finding will benefit spin-orbitronic research and advance spin-torque technologies.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.126.107204