Exploring Complex Mixtures by Cyclic Ion Mobility High-Resolution Mass Spectrometry: Application Toward Petroleum
The in-depth isomeric and isobaric description of ultra-complex organic mixtures remains one of the most challenging analytical tasks. In the last two decades, ion mobility coupled to high-performance mass spectrometry added an additional structural dimension. Despite tremendous instrumental improve...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-04, Vol.93 (14), p.5872-5881 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The in-depth isomeric and isobaric description of ultra-complex organic mixtures remains one of the most challenging analytical tasks. In the last two decades, ion mobility coupled to high-performance mass spectrometry added an additional structural dimension. Despite tremendous instrumental improvements, commercial devices are still limited in ion mobility and mass spectrometric resolving power and struggle to resolve isobaric species and complex isomeric patterns. To overcome these limitations, we explored the capabilities of cyclic ion mobility high-resolution mass spectrometry with special emphasis on petrochemical applications. We could show that quadrupole-selected ion mobility mass spectrometry gives closer insights into the isomeric distribution. In combination with slicing the specific parts of the ion mobility dimension, isobaric interferences could be drastically removed. Collision-induced dissociation (CID) allowed separating structural groups of polycyclic aromatic hydrocarbons and heterocycles (PAH/PASH), deploying up to 10 passes in the cyclic ion mobility device. Finally, we introduce a data processing workflow to resolve the 3.4 mDa SH4/C3 mass split by combining ion mobility and mass spectrometric resolving power. Cyclic ion mobility with the intelligent design of experiments and processing routines will be a powerful approach addressing the isobaric and isomeric complexity of ultra-complex mixtures. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c00222 |