Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts

Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiology 2021-06, Vol.299 (3), p.203692-681
Hauptverfasser: Ueda, Daiju, Katayama, Yutaka, Yamamoto, Akira, Ichinose, Tsutomu, Arima, Hironori, Watanabe, Yusuke, Walston, Shannon L, Tatekawa, Hiroyuki, Takita, Hirotaka, Honjo, Takashi, Shimazaki, Akitoshi, Kabata, Daijiro, Ichida, Takao, Goto, Takeo, Miki, Yukio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!