Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts
Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based...
Gespeichert in:
Veröffentlicht in: | Radiology 2021-06, Vol.299 (3), p.203692-681 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 3 |
container_start_page | 203692 |
container_title | Radiology |
container_volume | 299 |
creator | Ueda, Daiju Katayama, Yutaka Yamamoto, Akira Ichinose, Tsutomu Arima, Hironori Watanabe, Yusuke Walston, Shannon L Tatekawa, Hiroyuki Takita, Hirotaka Honjo, Takashi Shimazaki, Akitoshi Kabata, Daijiro Ichida, Takao Goto, Takeo Miki, Yukio |
description | Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based model to produce DSA-like cerebral angiograms directly from dynamic angiograms and then quantitatively and visually evaluate these angiograms for clinical usefulness. Materials and Methods A retrospective model development and validation study was conducted on dynamic and DSA image pairs consecutively collected from January 2019 through April 2019. Angiograms showing misregistration were first separated per patient by two radiologists and sorted into the misregistration test data set. Nonmisregistration angiograms were divided into development and external test data sets at a ratio of 8:1 per patient. The development data set was divided into training and validation data sets at ratio of 3:1 per patient. The DL model was created by using the training data set, tuned with the validation data set, and then evaluated quantitatively with the external test data set and visually with the misregistration test data set. Quantitative evaluations used the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) with mixed liner models. Visual evaluation was conducted by using a numerical rating scale. Results The training, validation, nonmisregistration test, and misregistration test data sets included 10 751, 2784, 1346, and 711 paired images collected from 40 patients (mean age, 62 years ± 11 [standard deviation]; 33 women). In the quantitative evaluation, DL-generated angiograms showed a mean PSNR value of 40.2 dB ± 4.05 and a mean SSIM value of 0.97 ± 0.02, indicating high coincidence with the paired DSA images. In the visual evaluation, the median ratings of the DL-generated angiograms were similar to or better than those of the original DSA images for all 24 sequences. Conclusion The deep learning-based model provided clinically useful cerebral angiograms free from clinically significant artifacts directly from dynamic angiograms. Published under a CC BY 4.0 license. |
doi_str_mv | 10.1148/radiol.2021203692 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507667758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507667758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-4b09e0c0a0de5e128190c838f23dce8f160249dffa0e95eb6fee566d6be879483</originalsourceid><addsrcrecordid>eNpFkL1OwzAURi0EoqXwACzII0uK_-OMVYGC1IoF5shJrlOjJA52ItS3p1ULTHc559PVQeiWkjmlQj8EUznfzBlhlBGuMnaGplSyNKGcynM0JYTzRAuaTdBVjJ-EUCF1eokmnKc65VxNkXsE6PEaTOhcVyeFiVDhRVc7XwfT4hV0EMzgfIc3voIGWx_wEgIUwTR_XL_d4W83bP044I2LAWoXh5O2CIOzphziNbqwpolwc7oz9PH89L58SdZvq9flYp2UQoohEQXJgJTEkAokUKZpRkrNtWW8KkFbqggTWWWtIZBJKJQFkEpVqgCdZkLzGbo_7vbBf40Qh7x1sYSmMR34MeZMklSpNJUHlB7RMvi4f9vmfXCtCbuckvxQOD8Wzv8L75270_xYtFD9Gb9J-Q-zlXog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507667758</pqid></control><display><type>article</type><title>Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts</title><source>Radiological Society of North America</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ueda, Daiju ; Katayama, Yutaka ; Yamamoto, Akira ; Ichinose, Tsutomu ; Arima, Hironori ; Watanabe, Yusuke ; Walston, Shannon L ; Tatekawa, Hiroyuki ; Takita, Hirotaka ; Honjo, Takashi ; Shimazaki, Akitoshi ; Kabata, Daijiro ; Ichida, Takao ; Goto, Takeo ; Miki, Yukio</creator><creatorcontrib>Ueda, Daiju ; Katayama, Yutaka ; Yamamoto, Akira ; Ichinose, Tsutomu ; Arima, Hironori ; Watanabe, Yusuke ; Walston, Shannon L ; Tatekawa, Hiroyuki ; Takita, Hirotaka ; Honjo, Takashi ; Shimazaki, Akitoshi ; Kabata, Daijiro ; Ichida, Takao ; Goto, Takeo ; Miki, Yukio</creatorcontrib><description>Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based model to produce DSA-like cerebral angiograms directly from dynamic angiograms and then quantitatively and visually evaluate these angiograms for clinical usefulness. Materials and Methods A retrospective model development and validation study was conducted on dynamic and DSA image pairs consecutively collected from January 2019 through April 2019. Angiograms showing misregistration were first separated per patient by two radiologists and sorted into the misregistration test data set. Nonmisregistration angiograms were divided into development and external test data sets at a ratio of 8:1 per patient. The development data set was divided into training and validation data sets at ratio of 3:1 per patient. The DL model was created by using the training data set, tuned with the validation data set, and then evaluated quantitatively with the external test data set and visually with the misregistration test data set. Quantitative evaluations used the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) with mixed liner models. Visual evaluation was conducted by using a numerical rating scale. Results The training, validation, nonmisregistration test, and misregistration test data sets included 10 751, 2784, 1346, and 711 paired images collected from 40 patients (mean age, 62 years ± 11 [standard deviation]; 33 women). In the quantitative evaluation, DL-generated angiograms showed a mean PSNR value of 40.2 dB ± 4.05 and a mean SSIM value of 0.97 ± 0.02, indicating high coincidence with the paired DSA images. In the visual evaluation, the median ratings of the DL-generated angiograms were similar to or better than those of the original DSA images for all 24 sequences. Conclusion The deep learning-based model provided clinically useful cerebral angiograms free from clinically significant artifacts directly from dynamic angiograms. Published under a CC BY 4.0 license.</description><identifier>ISSN: 0033-8419</identifier><identifier>EISSN: 1527-1315</identifier><identifier>DOI: 10.1148/radiol.2021203692</identifier><identifier>PMID: 33787336</identifier><language>eng</language><publisher>United States</publisher><ispartof>Radiology, 2021-06, Vol.299 (3), p.203692-681</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-4b09e0c0a0de5e128190c838f23dce8f160249dffa0e95eb6fee566d6be879483</citedby><cites>FETCH-LOGICAL-c454t-4b09e0c0a0de5e128190c838f23dce8f160249dffa0e95eb6fee566d6be879483</cites><orcidid>0000-0003-0621-0044 ; 0000-0003-3097-4140 ; 0000-0002-3878-3616 ; 0000-0003-2147-2640 ; 0000-0002-8050-4895 ; 0000-0002-7268-8313 ; 0000-0003-2860-4503 ; 0000-0002-4567-9745 ; 0000-0002-7744-1707 ; 0000-0001-7961-1266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4014,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33787336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueda, Daiju</creatorcontrib><creatorcontrib>Katayama, Yutaka</creatorcontrib><creatorcontrib>Yamamoto, Akira</creatorcontrib><creatorcontrib>Ichinose, Tsutomu</creatorcontrib><creatorcontrib>Arima, Hironori</creatorcontrib><creatorcontrib>Watanabe, Yusuke</creatorcontrib><creatorcontrib>Walston, Shannon L</creatorcontrib><creatorcontrib>Tatekawa, Hiroyuki</creatorcontrib><creatorcontrib>Takita, Hirotaka</creatorcontrib><creatorcontrib>Honjo, Takashi</creatorcontrib><creatorcontrib>Shimazaki, Akitoshi</creatorcontrib><creatorcontrib>Kabata, Daijiro</creatorcontrib><creatorcontrib>Ichida, Takao</creatorcontrib><creatorcontrib>Goto, Takeo</creatorcontrib><creatorcontrib>Miki, Yukio</creatorcontrib><title>Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts</title><title>Radiology</title><addtitle>Radiology</addtitle><description>Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based model to produce DSA-like cerebral angiograms directly from dynamic angiograms and then quantitatively and visually evaluate these angiograms for clinical usefulness. Materials and Methods A retrospective model development and validation study was conducted on dynamic and DSA image pairs consecutively collected from January 2019 through April 2019. Angiograms showing misregistration were first separated per patient by two radiologists and sorted into the misregistration test data set. Nonmisregistration angiograms were divided into development and external test data sets at a ratio of 8:1 per patient. The development data set was divided into training and validation data sets at ratio of 3:1 per patient. The DL model was created by using the training data set, tuned with the validation data set, and then evaluated quantitatively with the external test data set and visually with the misregistration test data set. Quantitative evaluations used the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) with mixed liner models. Visual evaluation was conducted by using a numerical rating scale. Results The training, validation, nonmisregistration test, and misregistration test data sets included 10 751, 2784, 1346, and 711 paired images collected from 40 patients (mean age, 62 years ± 11 [standard deviation]; 33 women). In the quantitative evaluation, DL-generated angiograms showed a mean PSNR value of 40.2 dB ± 4.05 and a mean SSIM value of 0.97 ± 0.02, indicating high coincidence with the paired DSA images. In the visual evaluation, the median ratings of the DL-generated angiograms were similar to or better than those of the original DSA images for all 24 sequences. Conclusion The deep learning-based model provided clinically useful cerebral angiograms free from clinically significant artifacts directly from dynamic angiograms. Published under a CC BY 4.0 license.</description><issn>0033-8419</issn><issn>1527-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkL1OwzAURi0EoqXwACzII0uK_-OMVYGC1IoF5shJrlOjJA52ItS3p1ULTHc559PVQeiWkjmlQj8EUznfzBlhlBGuMnaGplSyNKGcynM0JYTzRAuaTdBVjJ-EUCF1eokmnKc65VxNkXsE6PEaTOhcVyeFiVDhRVc7XwfT4hV0EMzgfIc3voIGWx_wEgIUwTR_XL_d4W83bP044I2LAWoXh5O2CIOzphziNbqwpolwc7oz9PH89L58SdZvq9flYp2UQoohEQXJgJTEkAokUKZpRkrNtWW8KkFbqggTWWWtIZBJKJQFkEpVqgCdZkLzGbo_7vbBf40Qh7x1sYSmMR34MeZMklSpNJUHlB7RMvi4f9vmfXCtCbuckvxQOD8Wzv8L75270_xYtFD9Gb9J-Q-zlXog</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ueda, Daiju</creator><creator>Katayama, Yutaka</creator><creator>Yamamoto, Akira</creator><creator>Ichinose, Tsutomu</creator><creator>Arima, Hironori</creator><creator>Watanabe, Yusuke</creator><creator>Walston, Shannon L</creator><creator>Tatekawa, Hiroyuki</creator><creator>Takita, Hirotaka</creator><creator>Honjo, Takashi</creator><creator>Shimazaki, Akitoshi</creator><creator>Kabata, Daijiro</creator><creator>Ichida, Takao</creator><creator>Goto, Takeo</creator><creator>Miki, Yukio</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0621-0044</orcidid><orcidid>https://orcid.org/0000-0003-3097-4140</orcidid><orcidid>https://orcid.org/0000-0002-3878-3616</orcidid><orcidid>https://orcid.org/0000-0003-2147-2640</orcidid><orcidid>https://orcid.org/0000-0002-8050-4895</orcidid><orcidid>https://orcid.org/0000-0002-7268-8313</orcidid><orcidid>https://orcid.org/0000-0003-2860-4503</orcidid><orcidid>https://orcid.org/0000-0002-4567-9745</orcidid><orcidid>https://orcid.org/0000-0002-7744-1707</orcidid><orcidid>https://orcid.org/0000-0001-7961-1266</orcidid></search><sort><creationdate>20210601</creationdate><title>Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts</title><author>Ueda, Daiju ; Katayama, Yutaka ; Yamamoto, Akira ; Ichinose, Tsutomu ; Arima, Hironori ; Watanabe, Yusuke ; Walston, Shannon L ; Tatekawa, Hiroyuki ; Takita, Hirotaka ; Honjo, Takashi ; Shimazaki, Akitoshi ; Kabata, Daijiro ; Ichida, Takao ; Goto, Takeo ; Miki, Yukio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-4b09e0c0a0de5e128190c838f23dce8f160249dffa0e95eb6fee566d6be879483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueda, Daiju</creatorcontrib><creatorcontrib>Katayama, Yutaka</creatorcontrib><creatorcontrib>Yamamoto, Akira</creatorcontrib><creatorcontrib>Ichinose, Tsutomu</creatorcontrib><creatorcontrib>Arima, Hironori</creatorcontrib><creatorcontrib>Watanabe, Yusuke</creatorcontrib><creatorcontrib>Walston, Shannon L</creatorcontrib><creatorcontrib>Tatekawa, Hiroyuki</creatorcontrib><creatorcontrib>Takita, Hirotaka</creatorcontrib><creatorcontrib>Honjo, Takashi</creatorcontrib><creatorcontrib>Shimazaki, Akitoshi</creatorcontrib><creatorcontrib>Kabata, Daijiro</creatorcontrib><creatorcontrib>Ichida, Takao</creatorcontrib><creatorcontrib>Goto, Takeo</creatorcontrib><creatorcontrib>Miki, Yukio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueda, Daiju</au><au>Katayama, Yutaka</au><au>Yamamoto, Akira</au><au>Ichinose, Tsutomu</au><au>Arima, Hironori</au><au>Watanabe, Yusuke</au><au>Walston, Shannon L</au><au>Tatekawa, Hiroyuki</au><au>Takita, Hirotaka</au><au>Honjo, Takashi</au><au>Shimazaki, Akitoshi</au><au>Kabata, Daijiro</au><au>Ichida, Takao</au><au>Goto, Takeo</au><au>Miki, Yukio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts</atitle><jtitle>Radiology</jtitle><addtitle>Radiology</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>299</volume><issue>3</issue><spage>203692</spage><epage>681</epage><pages>203692-681</pages><issn>0033-8419</issn><eissn>1527-1315</eissn><abstract>Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based model to produce DSA-like cerebral angiograms directly from dynamic angiograms and then quantitatively and visually evaluate these angiograms for clinical usefulness. Materials and Methods A retrospective model development and validation study was conducted on dynamic and DSA image pairs consecutively collected from January 2019 through April 2019. Angiograms showing misregistration were first separated per patient by two radiologists and sorted into the misregistration test data set. Nonmisregistration angiograms were divided into development and external test data sets at a ratio of 8:1 per patient. The development data set was divided into training and validation data sets at ratio of 3:1 per patient. The DL model was created by using the training data set, tuned with the validation data set, and then evaluated quantitatively with the external test data set and visually with the misregistration test data set. Quantitative evaluations used the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) with mixed liner models. Visual evaluation was conducted by using a numerical rating scale. Results The training, validation, nonmisregistration test, and misregistration test data sets included 10 751, 2784, 1346, and 711 paired images collected from 40 patients (mean age, 62 years ± 11 [standard deviation]; 33 women). In the quantitative evaluation, DL-generated angiograms showed a mean PSNR value of 40.2 dB ± 4.05 and a mean SSIM value of 0.97 ± 0.02, indicating high coincidence with the paired DSA images. In the visual evaluation, the median ratings of the DL-generated angiograms were similar to or better than those of the original DSA images for all 24 sequences. Conclusion The deep learning-based model provided clinically useful cerebral angiograms free from clinically significant artifacts directly from dynamic angiograms. Published under a CC BY 4.0 license.</abstract><cop>United States</cop><pmid>33787336</pmid><doi>10.1148/radiol.2021203692</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0621-0044</orcidid><orcidid>https://orcid.org/0000-0003-3097-4140</orcidid><orcidid>https://orcid.org/0000-0002-3878-3616</orcidid><orcidid>https://orcid.org/0000-0003-2147-2640</orcidid><orcidid>https://orcid.org/0000-0002-8050-4895</orcidid><orcidid>https://orcid.org/0000-0002-7268-8313</orcidid><orcidid>https://orcid.org/0000-0003-2860-4503</orcidid><orcidid>https://orcid.org/0000-0002-4567-9745</orcidid><orcidid>https://orcid.org/0000-0002-7744-1707</orcidid><orcidid>https://orcid.org/0000-0001-7961-1266</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-8419 |
ispartof | Radiology, 2021-06, Vol.299 (3), p.203692-681 |
issn | 0033-8419 1527-1315 |
language | eng |
recordid | cdi_proquest_miscellaneous_2507667758 |
source | Radiological Society of North America; EZB-FREE-00999 freely available EZB journals |
title | Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-based%20Angiogram%20Generation%20Model%20for%20Cerebral%20Angiography%20without%20Misregistration%20Artifacts&rft.jtitle=Radiology&rft.au=Ueda,%20Daiju&rft.date=2021-06-01&rft.volume=299&rft.issue=3&rft.spage=203692&rft.epage=681&rft.pages=203692-681&rft.issn=0033-8419&rft.eissn=1527-1315&rft_id=info:doi/10.1148/radiol.2021203692&rft_dat=%3Cproquest_cross%3E2507667758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507667758&rft_id=info:pmid/33787336&rfr_iscdi=true |