Lattice model for self-folding at the microscale
Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2021-04, Vol.44 (4), p.46-46, Article 46 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 4 |
container_start_page | 46 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 44 |
creator | Simões, T. S. A. N. Melo, H. P. M. Araújo, N. A. M. |
description | Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of
N
lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed.
Graphic abstract |
doi_str_mv | 10.1140/epje/s10189-021-00056-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507149893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507149893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYjD4C1CJC5ewJE7a5IgmvqRJXEDiFmWtMzp17WjaA_-elI4hceFkS378yn4IueTshnPJZrhd4yxwxrWhTHDKGFMphQNywoURVBv1drjvJZ-Q0xDWEYq7cEwmAJmGVKoTwhau68ock01TYJX4pk0CVp76pirKepW4Lune47TM2ybkrsIzcuRdFfB8V6fk9f7uZf5IF88PT_PbBc2lyDoKJuPAdQqpdz5TwPIlByiWgM4oNOhUqoTzErAAxqRQTnksYoNSF1oImJLrMXfbNh89hs5uypBjVbkamz5YoVjGpdEGInr1B103fVvH60Yq1QyySGUjNXwSWvR225Yb135azuwg1Q5S7SjVRqn2W6od8i92-f1yg8V-78diBPQIhDiqV9j-HvBf9hf3o4Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507168037</pqid></control><display><type>article</type><title>Lattice model for self-folding at the microscale</title><source>SpringerLink Journals - AutoHoldings</source><creator>Simões, T. S. A. N. ; Melo, H. P. M. ; Araújo, N. A. M.</creator><creatorcontrib>Simões, T. S. A. N. ; Melo, H. P. M. ; Araújo, N. A. M.</creatorcontrib><description>Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of
N
lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed.
Graphic abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-021-00056-3</identifier><identifier>PMID: 33783645</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed matter physics ; Folding ; Nanotechnology ; Panels ; Physics ; Physics and Astronomy ; Physics and Geometry of Flexible Plates and Shells ; Polymer Sciences ; Regular Article - Soft Matter ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2021-04, Vol.44 (4), p.46-46, Article 46</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</citedby><cites>FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</cites><orcidid>0000-0003-1841-0502 ; 0000-0002-2507-4511 ; 0000-0002-1677-6060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-021-00056-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-021-00056-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33783645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simões, T. S. A. N.</creatorcontrib><creatorcontrib>Melo, H. P. M.</creatorcontrib><creatorcontrib>Araújo, N. A. M.</creatorcontrib><title>Lattice model for self-folding at the microscale</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of
N
lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed.
Graphic abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed matter physics</subject><subject>Folding</subject><subject>Nanotechnology</subject><subject>Panels</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics and Geometry of Flexible Plates and Shells</subject><subject>Polymer Sciences</subject><subject>Regular Article - Soft Matter</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEYjD4C1CJC5ewJE7a5IgmvqRJXEDiFmWtMzp17WjaA_-elI4hceFkS378yn4IueTshnPJZrhd4yxwxrWhTHDKGFMphQNywoURVBv1drjvJZ-Q0xDWEYq7cEwmAJmGVKoTwhau68ock01TYJX4pk0CVp76pirKepW4Lune47TM2ybkrsIzcuRdFfB8V6fk9f7uZf5IF88PT_PbBc2lyDoKJuPAdQqpdz5TwPIlByiWgM4oNOhUqoTzErAAxqRQTnksYoNSF1oImJLrMXfbNh89hs5uypBjVbkamz5YoVjGpdEGInr1B103fVvH60Yq1QyySGUjNXwSWvR225Yb135azuwg1Q5S7SjVRqn2W6od8i92-f1yg8V-78diBPQIhDiqV9j-HvBf9hf3o4Nw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Simões, T. S. A. N.</creator><creator>Melo, H. P. M.</creator><creator>Araújo, N. A. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1841-0502</orcidid><orcidid>https://orcid.org/0000-0002-2507-4511</orcidid><orcidid>https://orcid.org/0000-0002-1677-6060</orcidid></search><sort><creationdate>20210401</creationdate><title>Lattice model for self-folding at the microscale</title><author>Simões, T. S. A. N. ; Melo, H. P. M. ; Araújo, N. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed matter physics</topic><topic>Folding</topic><topic>Nanotechnology</topic><topic>Panels</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics and Geometry of Flexible Plates and Shells</topic><topic>Polymer Sciences</topic><topic>Regular Article - Soft Matter</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simões, T. S. A. N.</creatorcontrib><creatorcontrib>Melo, H. P. M.</creatorcontrib><creatorcontrib>Araújo, N. A. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simões, T. S. A. N.</au><au>Melo, H. P. M.</au><au>Araújo, N. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice model for self-folding at the microscale</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>46</spage><epage>46</epage><pages>46-46</pages><artnum>46</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of
N
lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33783645</pmid><doi>10.1140/epje/s10189-021-00056-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1841-0502</orcidid><orcidid>https://orcid.org/0000-0002-2507-4511</orcidid><orcidid>https://orcid.org/0000-0002-1677-6060</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2021-04, Vol.44 (4), p.46-46, Article 46 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_2507149893 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biological and Medical Physics Biophysics Complex Fluids and Microfluidics Complex Systems Condensed matter physics Folding Nanotechnology Panels Physics Physics and Astronomy Physics and Geometry of Flexible Plates and Shells Polymer Sciences Regular Article - Soft Matter Soft and Granular Matter Surfaces and Interfaces Thin Films |
title | Lattice model for self-folding at the microscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20model%20for%20self-folding%20at%20the%20microscale&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Sim%C3%B5es,%20T.%20S.%20A.%20N.&rft.date=2021-04-01&rft.volume=44&rft.issue=4&rft.spage=46&rft.epage=46&rft.pages=46-46&rft.artnum=46&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-021-00056-3&rft_dat=%3Cproquest_cross%3E2507149893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507168037&rft_id=info:pmid/33783645&rfr_iscdi=true |