Lattice model for self-folding at the microscale

Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2021-04, Vol.44 (4), p.46-46, Article 46
Hauptverfasser: Simões, T. S. A. N., Melo, H. P. M., Araújo, N. A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 4
container_start_page 46
container_title The European physical journal. E, Soft matter and biological physics
container_volume 44
creator Simões, T. S. A. N.
Melo, H. P. M.
Araújo, N. A. M.
description Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of N lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed. Graphic abstract
doi_str_mv 10.1140/epje/s10189-021-00056-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507149893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507149893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYjD4C1CJC5ewJE7a5IgmvqRJXEDiFmWtMzp17WjaA_-elI4hceFkS378yn4IueTshnPJZrhd4yxwxrWhTHDKGFMphQNywoURVBv1drjvJZ-Q0xDWEYq7cEwmAJmGVKoTwhau68ock01TYJX4pk0CVp76pirKepW4Lune47TM2ybkrsIzcuRdFfB8V6fk9f7uZf5IF88PT_PbBc2lyDoKJuPAdQqpdz5TwPIlByiWgM4oNOhUqoTzErAAxqRQTnksYoNSF1oImJLrMXfbNh89hs5uypBjVbkamz5YoVjGpdEGInr1B103fVvH60Yq1QyySGUjNXwSWvR225Yb135azuwg1Q5S7SjVRqn2W6od8i92-f1yg8V-78diBPQIhDiqV9j-HvBf9hf3o4Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507168037</pqid></control><display><type>article</type><title>Lattice model for self-folding at the microscale</title><source>SpringerLink Journals - AutoHoldings</source><creator>Simões, T. S. A. N. ; Melo, H. P. M. ; Araújo, N. A. M.</creator><creatorcontrib>Simões, T. S. A. N. ; Melo, H. P. M. ; Araújo, N. A. M.</creatorcontrib><description>Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of N lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed. Graphic abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-021-00056-3</identifier><identifier>PMID: 33783645</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed matter physics ; Folding ; Nanotechnology ; Panels ; Physics ; Physics and Astronomy ; Physics and Geometry of Flexible Plates and Shells ; Polymer Sciences ; Regular Article - Soft Matter ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2021-04, Vol.44 (4), p.46-46, Article 46</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</citedby><cites>FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</cites><orcidid>0000-0003-1841-0502 ; 0000-0002-2507-4511 ; 0000-0002-1677-6060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-021-00056-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-021-00056-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33783645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simões, T. S. A. N.</creatorcontrib><creatorcontrib>Melo, H. P. M.</creatorcontrib><creatorcontrib>Araújo, N. A. M.</creatorcontrib><title>Lattice model for self-folding at the microscale</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of N lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed. Graphic abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed matter physics</subject><subject>Folding</subject><subject>Nanotechnology</subject><subject>Panels</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics and Geometry of Flexible Plates and Shells</subject><subject>Polymer Sciences</subject><subject>Regular Article - Soft Matter</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEYjD4C1CJC5ewJE7a5IgmvqRJXEDiFmWtMzp17WjaA_-elI4hceFkS378yn4IueTshnPJZrhd4yxwxrWhTHDKGFMphQNywoURVBv1drjvJZ-Q0xDWEYq7cEwmAJmGVKoTwhau68ock01TYJX4pk0CVp76pirKepW4Lune47TM2ybkrsIzcuRdFfB8V6fk9f7uZf5IF88PT_PbBc2lyDoKJuPAdQqpdz5TwPIlByiWgM4oNOhUqoTzErAAxqRQTnksYoNSF1oImJLrMXfbNh89hs5uypBjVbkamz5YoVjGpdEGInr1B103fVvH60Yq1QyySGUjNXwSWvR225Yb135azuwg1Q5S7SjVRqn2W6od8i92-f1yg8V-78diBPQIhDiqV9j-HvBf9hf3o4Nw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Simões, T. S. A. N.</creator><creator>Melo, H. P. M.</creator><creator>Araújo, N. A. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1841-0502</orcidid><orcidid>https://orcid.org/0000-0002-2507-4511</orcidid><orcidid>https://orcid.org/0000-0002-1677-6060</orcidid></search><sort><creationdate>20210401</creationdate><title>Lattice model for self-folding at the microscale</title><author>Simões, T. S. A. N. ; Melo, H. P. M. ; Araújo, N. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-3971318636faf7530cb133db3ea95e9ea5652af43ed300425a5fed042e48d8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed matter physics</topic><topic>Folding</topic><topic>Nanotechnology</topic><topic>Panels</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics and Geometry of Flexible Plates and Shells</topic><topic>Polymer Sciences</topic><topic>Regular Article - Soft Matter</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simões, T. S. A. N.</creatorcontrib><creatorcontrib>Melo, H. P. M.</creatorcontrib><creatorcontrib>Araújo, N. A. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simões, T. S. A. N.</au><au>Melo, H. P. M.</au><au>Araújo, N. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice model for self-folding at the microscale</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>46</spage><epage>46</epage><pages>46-46</pages><artnum>46</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Three-dimensional shell-like structures can be obtained spontaneously at the microscale from the self-folding of 2D templates of rigid panels. At least for simple structures, the motion of each panel is consistent with a Brownian process and folding occurs through a sequence of binding events, where pairs of panels meet at a specific closing angle. Here, we propose a lattice model to describe the dynamics of self-folding. As an example, we study the folding of a pyramid of N lateral faces. We combine analytical and numerical Monte Carlo simulations to find how the folding time depends on the number of faces, closing angle, and initial configuration. Implications for the study of more complex structures are discussed. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33783645</pmid><doi>10.1140/epje/s10189-021-00056-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1841-0502</orcidid><orcidid>https://orcid.org/0000-0002-2507-4511</orcidid><orcidid>https://orcid.org/0000-0002-1677-6060</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2021-04, Vol.44 (4), p.46-46, Article 46
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_2507149893
source SpringerLink Journals - AutoHoldings
subjects Biological and Medical Physics
Biophysics
Complex Fluids and Microfluidics
Complex Systems
Condensed matter physics
Folding
Nanotechnology
Panels
Physics
Physics and Astronomy
Physics and Geometry of Flexible Plates and Shells
Polymer Sciences
Regular Article - Soft Matter
Soft and Granular Matter
Surfaces and Interfaces
Thin Films
title Lattice model for self-folding at the microscale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20model%20for%20self-folding%20at%20the%20microscale&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Sim%C3%B5es,%20T.%20S.%20A.%20N.&rft.date=2021-04-01&rft.volume=44&rft.issue=4&rft.spage=46&rft.epage=46&rft.pages=46-46&rft.artnum=46&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-021-00056-3&rft_dat=%3Cproquest_cross%3E2507149893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507168037&rft_id=info:pmid/33783645&rfr_iscdi=true