Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets

[Display omitted] The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emuls...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-07, Vol.594, p.650-657
Hauptverfasser: Megone, William, Kong, Dexu, Peng, Lihui, Gautrot, Julien E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue
container_start_page 650
container_title Journal of colloid and interface science
container_volume 594
creator Megone, William
Kong, Dexu
Peng, Lihui
Gautrot, Julien E.
description [Display omitted] The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.
doi_str_mv 10.1016/j.jcis.2021.03.055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507147864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721003489</els_id><sourcerecordid>2507147864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1UVBboF-BQ5dhL0nESx7bUS4Voi4TUC3fLscdar_Jn8XihfHu8WtpjT0-eee9p_GPshkPDgQ9fd83ORWpaaHkDXQNCnLENBy1qyaH7wDZQNrWWWl6wS6IdAOdC6I_souukAjmoDXu5-5MTzlglfMZEdqriUs3otnaJrryK0JrTun89Lqb4dIi-PkkZZEzBOqSSjktYk0NfvcS8rQinUFsinMepzPZpzcVRLXZZaYuY6ZqdBzsRfnrXK_b44-7x9lf98Pvn_e33h9r1ALlucey8kq1QWqJS0od-DCMAShf0YK0ehPdeWzUKp7iDPqhhBO36ATvBRXfFvpxqywVPB6Rs5kgOp8kuuB7ItAIk76Ua-mJtT1aXVqKEwexTnG16NRzMkbfZmSNvc-RtoDOFdwl9fu8_jDP6f5G_gIvh28mA5ZPPEZMhF3EpoGJCl41f4__63wALlZTB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507147864</pqid></control><display><type>article</type><title>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</title><source>Elsevier ScienceDirect Journals</source><creator>Megone, William ; Kong, Dexu ; Peng, Lihui ; Gautrot, Julien E.</creator><creatorcontrib>Megone, William ; Kong, Dexu ; Peng, Lihui ; Gautrot, Julien E.</creatorcontrib><description>[Display omitted] The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.03.055</identifier><identifier>PMID: 33780768</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Interfacial mechanics ; Liquid-liquid interface ; Mechanical anisotropy ; Protein nanosheets ; Self-assembly</subject><ispartof>Journal of colloid and interface science, 2021-07, Vol.594, p.650-657</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</citedby><cites>FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979721003489$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33780768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Megone, William</creatorcontrib><creatorcontrib>Kong, Dexu</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Gautrot, Julien E.</creatorcontrib><title>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.</description><subject>Interfacial mechanics</subject><subject>Liquid-liquid interface</subject><subject>Mechanical anisotropy</subject><subject>Protein nanosheets</subject><subject>Self-assembly</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxS1UVBboF-BQ5dhL0nESx7bUS4Voi4TUC3fLscdar_Jn8XihfHu8WtpjT0-eee9p_GPshkPDgQ9fd83ORWpaaHkDXQNCnLENBy1qyaH7wDZQNrWWWl6wS6IdAOdC6I_souukAjmoDXu5-5MTzlglfMZEdqriUs3otnaJrryK0JrTun89Lqb4dIi-PkkZZEzBOqSSjktYk0NfvcS8rQinUFsinMepzPZpzcVRLXZZaYuY6ZqdBzsRfnrXK_b44-7x9lf98Pvn_e33h9r1ALlucey8kq1QWqJS0od-DCMAShf0YK0ehPdeWzUKp7iDPqhhBO36ATvBRXfFvpxqywVPB6Rs5kgOp8kuuB7ItAIk76Ua-mJtT1aXVqKEwexTnG16NRzMkbfZmSNvc-RtoDOFdwl9fu8_jDP6f5G_gIvh28mA5ZPPEZMhF3EpoGJCl41f4__63wALlZTB</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Megone, William</creator><creator>Kong, Dexu</creator><creator>Peng, Lihui</creator><creator>Gautrot, Julien E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210715</creationdate><title>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</title><author>Megone, William ; Kong, Dexu ; Peng, Lihui ; Gautrot, Julien E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Interfacial mechanics</topic><topic>Liquid-liquid interface</topic><topic>Mechanical anisotropy</topic><topic>Protein nanosheets</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Megone, William</creatorcontrib><creatorcontrib>Kong, Dexu</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Gautrot, Julien E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megone, William</au><au>Kong, Dexu</au><au>Peng, Lihui</au><au>Gautrot, Julien E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>594</volume><spage>650</spage><epage>657</epage><pages>650-657</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33780768</pmid><doi>10.1016/j.jcis.2021.03.055</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2021-07, Vol.594, p.650-657
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2507147864
source Elsevier ScienceDirect Journals
subjects Interfacial mechanics
Liquid-liquid interface
Mechanical anisotropy
Protein nanosheets
Self-assembly
title Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20reversal%20in%20mechanical%20anisotropy%20in%20liquid-liquid%20interfaces%20reinforced%20with%20self-assembled%20protein%20nanosheets&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Megone,%20William&rft.date=2021-07-15&rft.volume=594&rft.spage=650&rft.epage=657&rft.pages=650-657&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.03.055&rft_dat=%3Cproquest_cross%3E2507147864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507147864&rft_id=info:pmid/33780768&rft_els_id=S0021979721003489&rfr_iscdi=true