Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets
[Display omitted] The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emuls...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2021-07, Vol.594, p.650-657 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 657 |
---|---|
container_issue | |
container_start_page | 650 |
container_title | Journal of colloid and interface science |
container_volume | 594 |
creator | Megone, William Kong, Dexu Peng, Lihui Gautrot, Julien E. |
description | [Display omitted]
The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity. |
doi_str_mv | 10.1016/j.jcis.2021.03.055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507147864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721003489</els_id><sourcerecordid>2507147864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1UVBboF-BQ5dhL0nESx7bUS4Voi4TUC3fLscdar_Jn8XihfHu8WtpjT0-eee9p_GPshkPDgQ9fd83ORWpaaHkDXQNCnLENBy1qyaH7wDZQNrWWWl6wS6IdAOdC6I_souukAjmoDXu5-5MTzlglfMZEdqriUs3otnaJrryK0JrTun89Lqb4dIi-PkkZZEzBOqSSjktYk0NfvcS8rQinUFsinMepzPZpzcVRLXZZaYuY6ZqdBzsRfnrXK_b44-7x9lf98Pvn_e33h9r1ALlucey8kq1QWqJS0od-DCMAShf0YK0ehPdeWzUKp7iDPqhhBO36ATvBRXfFvpxqywVPB6Rs5kgOp8kuuB7ItAIk76Ua-mJtT1aXVqKEwexTnG16NRzMkbfZmSNvc-RtoDOFdwl9fu8_jDP6f5G_gIvh28mA5ZPPEZMhF3EpoGJCl41f4__63wALlZTB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507147864</pqid></control><display><type>article</type><title>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</title><source>Elsevier ScienceDirect Journals</source><creator>Megone, William ; Kong, Dexu ; Peng, Lihui ; Gautrot, Julien E.</creator><creatorcontrib>Megone, William ; Kong, Dexu ; Peng, Lihui ; Gautrot, Julien E.</creatorcontrib><description>[Display omitted]
The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.03.055</identifier><identifier>PMID: 33780768</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Interfacial mechanics ; Liquid-liquid interface ; Mechanical anisotropy ; Protein nanosheets ; Self-assembly</subject><ispartof>Journal of colloid and interface science, 2021-07, Vol.594, p.650-657</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</citedby><cites>FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979721003489$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33780768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Megone, William</creatorcontrib><creatorcontrib>Kong, Dexu</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Gautrot, Julien E.</creatorcontrib><title>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.</description><subject>Interfacial mechanics</subject><subject>Liquid-liquid interface</subject><subject>Mechanical anisotropy</subject><subject>Protein nanosheets</subject><subject>Self-assembly</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxS1UVBboF-BQ5dhL0nESx7bUS4Voi4TUC3fLscdar_Jn8XihfHu8WtpjT0-eee9p_GPshkPDgQ9fd83ORWpaaHkDXQNCnLENBy1qyaH7wDZQNrWWWl6wS6IdAOdC6I_souukAjmoDXu5-5MTzlglfMZEdqriUs3otnaJrryK0JrTun89Lqb4dIi-PkkZZEzBOqSSjktYk0NfvcS8rQinUFsinMepzPZpzcVRLXZZaYuY6ZqdBzsRfnrXK_b44-7x9lf98Pvn_e33h9r1ALlucey8kq1QWqJS0od-DCMAShf0YK0ehPdeWzUKp7iDPqhhBO36ATvBRXfFvpxqywVPB6Rs5kgOp8kuuB7ItAIk76Ua-mJtT1aXVqKEwexTnG16NRzMkbfZmSNvc-RtoDOFdwl9fu8_jDP6f5G_gIvh28mA5ZPPEZMhF3EpoGJCl41f4__63wALlZTB</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Megone, William</creator><creator>Kong, Dexu</creator><creator>Peng, Lihui</creator><creator>Gautrot, Julien E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210715</creationdate><title>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</title><author>Megone, William ; Kong, Dexu ; Peng, Lihui ; Gautrot, Julien E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-2eb3d8725897e887df4bfb00e7cf96aa965ddd9a8b5c81c04f86b09c46e35153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Interfacial mechanics</topic><topic>Liquid-liquid interface</topic><topic>Mechanical anisotropy</topic><topic>Protein nanosheets</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Megone, William</creatorcontrib><creatorcontrib>Kong, Dexu</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Gautrot, Julien E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megone, William</au><au>Kong, Dexu</au><au>Peng, Lihui</au><au>Gautrot, Julien E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>594</volume><spage>650</spage><epage>657</epage><pages>650-657</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
The structuring of liquid–liquid and liquid–air interfaces may play an important role in novel microfabrication platforms and biotechnologies, from the spontaneous formation of microfilaments from liquid droplets and the 3D printing of liquids, to the culture of stem cells on emulsions. Understanding the mechanical anisotropy of associated liquid interfaces is essential for the development of such systems. Models of AFM indentation at liquid interfaces, based on the Young-Laplace model, currently do not allow the quantification of interfacial mechanical properties of associated molecular films. This report presents such a model and compares its predictions to interfacial mechanical properties characterised via interfacial shear rheology. An extreme reversal of mechanical anisotropy of liquid–liquid interfaces is observed, upon self-assembly of protein nanosheets, by 5 orders of magnitude. Results indicate that, although interfacial rheology is more sensitive than AFM indentation to the mechanics of molecular films in the low range of interfacial mechanics, AFM indentation allows the quantification of mechanical properties of stiffer molecular films, and remains better adapted to the characterisation of small samples and enables the characterisation of local heterogeneity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33780768</pmid><doi>10.1016/j.jcis.2021.03.055</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2021-07, Vol.594, p.650-657 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2507147864 |
source | Elsevier ScienceDirect Journals |
subjects | Interfacial mechanics Liquid-liquid interface Mechanical anisotropy Protein nanosheets Self-assembly |
title | Extreme reversal in mechanical anisotropy in liquid-liquid interfaces reinforced with self-assembled protein nanosheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20reversal%20in%20mechanical%20anisotropy%20in%20liquid-liquid%20interfaces%20reinforced%20with%20self-assembled%20protein%20nanosheets&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Megone,%20William&rft.date=2021-07-15&rft.volume=594&rft.spage=650&rft.epage=657&rft.pages=650-657&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.03.055&rft_dat=%3Cproquest_cross%3E2507147864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507147864&rft_id=info:pmid/33780768&rft_els_id=S0021979721003489&rfr_iscdi=true |