Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites

One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-04, Vol.13 (13), p.15292-15304
Hauptverfasser: Schwenzer, Jonas A, Hellmann, Tim, Nejand, Bahram Abdollahi, Hu, Hang, Abzieher, Tobias, Schackmar, Fabian, Hossain, Ihteaz M, Fassl, Paul, Mayer, Thomas, Jaegermann, Wolfram, Lemmer, Uli, Paetzold, Ulrich W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15304
container_issue 13
container_start_page 15292
container_title ACS applied materials & interfaces
container_volume 13
creator Schwenzer, Jonas A
Hellmann, Tim
Nejand, Bahram Abdollahi
Hu, Hang
Abzieher, Tobias
Schackmar, Fabian
Hossain, Ihteaz M
Fassl, Paul
Mayer, Thomas
Jaegermann, Wolfram
Lemmer, Uli
Paetzold, Ulrich W
description One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.
doi_str_mv 10.1021/acsami.1c01547
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2506282603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506282603</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRbP3ZupQsRUidzF_SpRS1hUJF6zrcTG50apKpM4nQne_gG_okRlO7c3XP4jsf3EPIWURHEWXRFWgPlRlFmkZSxHtkGI2FCBMm2f4uCzEgR96vKFWcUXlIBpzHSsScD8nD8gVdBWXw2EBmStNsAqjzYAKNsXUwsdXaevObbRFMN5kzebBwz1Ab_fXxOattn4N7dPbdv5oG_Qk5KKD0eLq9x-Tp9mY5mYbzxd1scj0PgXPahOMcBIMcsxxjVkhIRKEixTVjMRTIUVGOmYi1BEi0ylBJBKE6PkFkiYz5MbnovWtn31r0TVoZr7EsoUbb-pRJqljCOk-HjnpUO-u9wyJdO1OB26QRTX92TPsd0-2OXeF8626zCvMd_jdcB1z2QFdMV7Z1dffqf7ZvElh_xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506282603</pqid></control><display><type>article</type><title>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</title><source>ACS Publications</source><creator>Schwenzer, Jonas A ; Hellmann, Tim ; Nejand, Bahram Abdollahi ; Hu, Hang ; Abzieher, Tobias ; Schackmar, Fabian ; Hossain, Ihteaz M ; Fassl, Paul ; Mayer, Thomas ; Jaegermann, Wolfram ; Lemmer, Uli ; Paetzold, Ulrich W</creator><creatorcontrib>Schwenzer, Jonas A ; Hellmann, Tim ; Nejand, Bahram Abdollahi ; Hu, Hang ; Abzieher, Tobias ; Schackmar, Fabian ; Hossain, Ihteaz M ; Fassl, Paul ; Mayer, Thomas ; Jaegermann, Wolfram ; Lemmer, Uli ; Paetzold, Ulrich W</creatorcontrib><description>One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c01547</identifier><identifier>PMID: 33764733</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-04, Vol.13 (13), p.15292-15304</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</citedby><cites>FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</cites><orcidid>0000-0002-2733-0136 ; 0000-0002-1557-8361 ; 0000-0001-9892-329X ; 0000-0002-9604-3405 ; 0000-0001-6533-1757 ; 0000-0001-8795-4875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c01547$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c01547$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33764733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwenzer, Jonas A</creatorcontrib><creatorcontrib>Hellmann, Tim</creatorcontrib><creatorcontrib>Nejand, Bahram Abdollahi</creatorcontrib><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Schackmar, Fabian</creatorcontrib><creatorcontrib>Hossain, Ihteaz M</creatorcontrib><creatorcontrib>Fassl, Paul</creatorcontrib><creatorcontrib>Mayer, Thomas</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Paetzold, Ulrich W</creatorcontrib><title>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRbP3ZupQsRUidzF_SpRS1hUJF6zrcTG50apKpM4nQne_gG_okRlO7c3XP4jsf3EPIWURHEWXRFWgPlRlFmkZSxHtkGI2FCBMm2f4uCzEgR96vKFWcUXlIBpzHSsScD8nD8gVdBWXw2EBmStNsAqjzYAKNsXUwsdXaevObbRFMN5kzebBwz1Ab_fXxOattn4N7dPbdv5oG_Qk5KKD0eLq9x-Tp9mY5mYbzxd1scj0PgXPahOMcBIMcsxxjVkhIRKEixTVjMRTIUVGOmYi1BEi0ylBJBKE6PkFkiYz5MbnovWtn31r0TVoZr7EsoUbb-pRJqljCOk-HjnpUO-u9wyJdO1OB26QRTX92TPsd0-2OXeF8626zCvMd_jdcB1z2QFdMV7Z1dffqf7ZvElh_xA</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Schwenzer, Jonas A</creator><creator>Hellmann, Tim</creator><creator>Nejand, Bahram Abdollahi</creator><creator>Hu, Hang</creator><creator>Abzieher, Tobias</creator><creator>Schackmar, Fabian</creator><creator>Hossain, Ihteaz M</creator><creator>Fassl, Paul</creator><creator>Mayer, Thomas</creator><creator>Jaegermann, Wolfram</creator><creator>Lemmer, Uli</creator><creator>Paetzold, Ulrich W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2733-0136</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0001-9892-329X</orcidid><orcidid>https://orcid.org/0000-0002-9604-3405</orcidid><orcidid>https://orcid.org/0000-0001-6533-1757</orcidid><orcidid>https://orcid.org/0000-0001-8795-4875</orcidid></search><sort><creationdate>20210407</creationdate><title>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</title><author>Schwenzer, Jonas A ; Hellmann, Tim ; Nejand, Bahram Abdollahi ; Hu, Hang ; Abzieher, Tobias ; Schackmar, Fabian ; Hossain, Ihteaz M ; Fassl, Paul ; Mayer, Thomas ; Jaegermann, Wolfram ; Lemmer, Uli ; Paetzold, Ulrich W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwenzer, Jonas A</creatorcontrib><creatorcontrib>Hellmann, Tim</creatorcontrib><creatorcontrib>Nejand, Bahram Abdollahi</creatorcontrib><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Schackmar, Fabian</creatorcontrib><creatorcontrib>Hossain, Ihteaz M</creatorcontrib><creatorcontrib>Fassl, Paul</creatorcontrib><creatorcontrib>Mayer, Thomas</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Paetzold, Ulrich W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwenzer, Jonas A</au><au>Hellmann, Tim</au><au>Nejand, Bahram Abdollahi</au><au>Hu, Hang</au><au>Abzieher, Tobias</au><au>Schackmar, Fabian</au><au>Hossain, Ihteaz M</au><au>Fassl, Paul</au><au>Mayer, Thomas</au><au>Jaegermann, Wolfram</au><au>Lemmer, Uli</au><au>Paetzold, Ulrich W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>13</volume><issue>13</issue><spage>15292</spage><epage>15304</epage><pages>15292-15304</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33764733</pmid><doi>10.1021/acsami.1c01547</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2733-0136</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0001-9892-329X</orcidid><orcidid>https://orcid.org/0000-0002-9604-3405</orcidid><orcidid>https://orcid.org/0000-0001-6533-1757</orcidid><orcidid>https://orcid.org/0000-0001-8795-4875</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-04, Vol.13 (13), p.15292-15304
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2506282603
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Stability%20and%20Cation%20Composition%20of%20Hybrid%20Organic%E2%80%93Inorganic%20Perovskites&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Schwenzer,%20Jonas%20A&rft.date=2021-04-07&rft.volume=13&rft.issue=13&rft.spage=15292&rft.epage=15304&rft.pages=15292-15304&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c01547&rft_dat=%3Cproquest_cross%3E2506282603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506282603&rft_id=info:pmid/33764733&rfr_iscdi=true