Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites
One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perov...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-04, Vol.13 (13), p.15292-15304 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15304 |
---|---|
container_issue | 13 |
container_start_page | 15292 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Schwenzer, Jonas A Hellmann, Tim Nejand, Bahram Abdollahi Hu, Hang Abzieher, Tobias Schackmar, Fabian Hossain, Ihteaz M Fassl, Paul Mayer, Thomas Jaegermann, Wolfram Lemmer, Uli Paetzold, Ulrich W |
description | One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application. |
doi_str_mv | 10.1021/acsami.1c01547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2506282603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506282603</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRbP3ZupQsRUidzF_SpRS1hUJF6zrcTG50apKpM4nQne_gG_okRlO7c3XP4jsf3EPIWURHEWXRFWgPlRlFmkZSxHtkGI2FCBMm2f4uCzEgR96vKFWcUXlIBpzHSsScD8nD8gVdBWXw2EBmStNsAqjzYAKNsXUwsdXaevObbRFMN5kzebBwz1Ab_fXxOattn4N7dPbdv5oG_Qk5KKD0eLq9x-Tp9mY5mYbzxd1scj0PgXPahOMcBIMcsxxjVkhIRKEixTVjMRTIUVGOmYi1BEi0ylBJBKE6PkFkiYz5MbnovWtn31r0TVoZr7EsoUbb-pRJqljCOk-HjnpUO-u9wyJdO1OB26QRTX92TPsd0-2OXeF8626zCvMd_jdcB1z2QFdMV7Z1dffqf7ZvElh_xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506282603</pqid></control><display><type>article</type><title>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</title><source>ACS Publications</source><creator>Schwenzer, Jonas A ; Hellmann, Tim ; Nejand, Bahram Abdollahi ; Hu, Hang ; Abzieher, Tobias ; Schackmar, Fabian ; Hossain, Ihteaz M ; Fassl, Paul ; Mayer, Thomas ; Jaegermann, Wolfram ; Lemmer, Uli ; Paetzold, Ulrich W</creator><creatorcontrib>Schwenzer, Jonas A ; Hellmann, Tim ; Nejand, Bahram Abdollahi ; Hu, Hang ; Abzieher, Tobias ; Schackmar, Fabian ; Hossain, Ihteaz M ; Fassl, Paul ; Mayer, Thomas ; Jaegermann, Wolfram ; Lemmer, Uli ; Paetzold, Ulrich W</creatorcontrib><description>One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c01547</identifier><identifier>PMID: 33764733</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2021-04, Vol.13 (13), p.15292-15304</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</citedby><cites>FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</cites><orcidid>0000-0002-2733-0136 ; 0000-0002-1557-8361 ; 0000-0001-9892-329X ; 0000-0002-9604-3405 ; 0000-0001-6533-1757 ; 0000-0001-8795-4875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c01547$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c01547$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33764733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwenzer, Jonas A</creatorcontrib><creatorcontrib>Hellmann, Tim</creatorcontrib><creatorcontrib>Nejand, Bahram Abdollahi</creatorcontrib><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Schackmar, Fabian</creatorcontrib><creatorcontrib>Hossain, Ihteaz M</creatorcontrib><creatorcontrib>Fassl, Paul</creatorcontrib><creatorcontrib>Mayer, Thomas</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Paetzold, Ulrich W</creatorcontrib><title>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRbP3ZupQsRUidzF_SpRS1hUJF6zrcTG50apKpM4nQne_gG_okRlO7c3XP4jsf3EPIWURHEWXRFWgPlRlFmkZSxHtkGI2FCBMm2f4uCzEgR96vKFWcUXlIBpzHSsScD8nD8gVdBWXw2EBmStNsAqjzYAKNsXUwsdXaevObbRFMN5kzebBwz1Ab_fXxOattn4N7dPbdv5oG_Qk5KKD0eLq9x-Tp9mY5mYbzxd1scj0PgXPahOMcBIMcsxxjVkhIRKEixTVjMRTIUVGOmYi1BEi0ylBJBKE6PkFkiYz5MbnovWtn31r0TVoZr7EsoUbb-pRJqljCOk-HjnpUO-u9wyJdO1OB26QRTX92TPsd0-2OXeF8626zCvMd_jdcB1z2QFdMV7Z1dffqf7ZvElh_xA</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Schwenzer, Jonas A</creator><creator>Hellmann, Tim</creator><creator>Nejand, Bahram Abdollahi</creator><creator>Hu, Hang</creator><creator>Abzieher, Tobias</creator><creator>Schackmar, Fabian</creator><creator>Hossain, Ihteaz M</creator><creator>Fassl, Paul</creator><creator>Mayer, Thomas</creator><creator>Jaegermann, Wolfram</creator><creator>Lemmer, Uli</creator><creator>Paetzold, Ulrich W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2733-0136</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0001-9892-329X</orcidid><orcidid>https://orcid.org/0000-0002-9604-3405</orcidid><orcidid>https://orcid.org/0000-0001-6533-1757</orcidid><orcidid>https://orcid.org/0000-0001-8795-4875</orcidid></search><sort><creationdate>20210407</creationdate><title>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</title><author>Schwenzer, Jonas A ; Hellmann, Tim ; Nejand, Bahram Abdollahi ; Hu, Hang ; Abzieher, Tobias ; Schackmar, Fabian ; Hossain, Ihteaz M ; Fassl, Paul ; Mayer, Thomas ; Jaegermann, Wolfram ; Lemmer, Uli ; Paetzold, Ulrich W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-9da42adebde72f5a84f6163c227afe3e603eb47c5aa8c6be65ea46deb8ee28573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwenzer, Jonas A</creatorcontrib><creatorcontrib>Hellmann, Tim</creatorcontrib><creatorcontrib>Nejand, Bahram Abdollahi</creatorcontrib><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>Abzieher, Tobias</creatorcontrib><creatorcontrib>Schackmar, Fabian</creatorcontrib><creatorcontrib>Hossain, Ihteaz M</creatorcontrib><creatorcontrib>Fassl, Paul</creatorcontrib><creatorcontrib>Mayer, Thomas</creatorcontrib><creatorcontrib>Jaegermann, Wolfram</creatorcontrib><creatorcontrib>Lemmer, Uli</creatorcontrib><creatorcontrib>Paetzold, Ulrich W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwenzer, Jonas A</au><au>Hellmann, Tim</au><au>Nejand, Bahram Abdollahi</au><au>Hu, Hang</au><au>Abzieher, Tobias</au><au>Schackmar, Fabian</au><au>Hossain, Ihteaz M</au><au>Fassl, Paul</au><au>Mayer, Thomas</au><au>Jaegermann, Wolfram</au><au>Lemmer, Uli</au><au>Paetzold, Ulrich W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>13</volume><issue>13</issue><spage>15292</spage><epage>15304</epage><pages>15292-15304</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>One of the great challenges of hybrid organic–inorganic perovskite photovoltaics is the material’s stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33764733</pmid><doi>10.1021/acsami.1c01547</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2733-0136</orcidid><orcidid>https://orcid.org/0000-0002-1557-8361</orcidid><orcidid>https://orcid.org/0000-0001-9892-329X</orcidid><orcidid>https://orcid.org/0000-0002-9604-3405</orcidid><orcidid>https://orcid.org/0000-0001-6533-1757</orcidid><orcidid>https://orcid.org/0000-0001-8795-4875</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-04, Vol.13 (13), p.15292-15304 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2506282603 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Stability%20and%20Cation%20Composition%20of%20Hybrid%20Organic%E2%80%93Inorganic%20Perovskites&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Schwenzer,%20Jonas%20A&rft.date=2021-04-07&rft.volume=13&rft.issue=13&rft.spage=15292&rft.epage=15304&rft.pages=15292-15304&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c01547&rft_dat=%3Cproquest_cross%3E2506282603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506282603&rft_id=info:pmid/33764733&rfr_iscdi=true |