Coupling Genomics and Hydraulic Information to Predict the Nitrogen Dynamics in a Channel Confluence

The simulation of nitrogen dynamics in urban channel confluences is essential for the evaluation and improvement of water quality. The omics-based modeling approaches that have been rapidly developed have been increasingly applied to characterize metabolisms of the microbial community and transforma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-04, Vol.55 (8), p.4616-4628
Hauptverfasser: Hui, Cizhang, Li, Yi, Zhang, Wenlong, Yang, Gang, Wang, Haolan, Gao, Yu, Niu, Lihua, Wang, Longfei, Zhang, Huanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4628
container_issue 8
container_start_page 4616
container_title Environmental science & technology
container_volume 55
creator Hui, Cizhang
Li, Yi
Zhang, Wenlong
Yang, Gang
Wang, Haolan
Gao, Yu
Niu, Lihua
Wang, Longfei
Zhang, Huanjun
description The simulation of nitrogen dynamics in urban channel confluences is essential for the evaluation and improvement of water quality. The omics-based modeling approaches that have been rapidly developed have been increasingly applied to characterize metabolisms of the microbial community and transformation of the associated materials. However, the transport of microorganisms and chemicals within and among different phases, which could be the rate-limiting step for the nitrogen dynamics, are always neglected or oversimplified in omics-based models. Therefore, this study proposes a novel simulation system coupling genomic and hydraulic information to simulate transport and transformation processes and provide predictions of nitrogen dynamics in a confluence. The proposed model was able to capture multiphase mass transport, microbial population dynamics, and nitrogen transformation and accurately predict gene abundances and nitrogen concentrations in both water and sediment; the mean relative errors were all lower than 40%. The model emphasized the importance of transport processes, which contributed more than 90% to gene abundances and chemical concentrations. Moreover, the simulation of reaction rates exhibited the specific nitrogen transformation processes in the confluence. The sulfide oxidation and the nitrate reduction and anaerobic ammonium oxidation, with the participation of the genes nap and hzo, respectively, were promoted as the main processes of nitrate and nitrite reduction.
doi_str_mv 10.1021/acs.est.0c04018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2505366612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505366612</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-9092188f5b3aa93391bc2b27cd2662de43bc13bafa8e89d908b3c0b7768284f73</originalsourceid><addsrcrecordid>eNp1kTFPwzAQRi0EoqUwsyFLLEgo5Ww3jjOiAKUSAgaQ2CLHcairxC52MvTfk9DSAYnplve-O92H0DmBKQFKbqQKUx3aKSiYAREHaExiClEsYnKIxgCERSnjHyN0EsIKACgDcYxGjCUcOMRjVGauW9fGfuK5tq4xKmBpS_y4Kb3saqPwwlbON7I1zuLW4VevS6Na3C41fjatd5_a4ruNlT-qsVjibCmt1TXOnK3qTlulT9FRJeugz3Zzgt4f7t-yx-jpZb7Ibp8iyThpoxRSSoSo4oJJmTKWkkLRgiaqpJzTUs9YoQgrZCWFFmmZgiiYgiJJuKBiViVsgq62uWvvvrr-L3ljgtJ1La12XchpDDHjnBPao5d_0JXrvO2v6ykiZhSoGAJvtpTyLgSvq3ztTSP9JieQDwXkfQH5YO8K6I2LXW5XNLrc878f74HrLTCY-53_xX0DwtGQNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518420287</pqid></control><display><type>article</type><title>Coupling Genomics and Hydraulic Information to Predict the Nitrogen Dynamics in a Channel Confluence</title><source>ACS Publications</source><source>MEDLINE</source><creator>Hui, Cizhang ; Li, Yi ; Zhang, Wenlong ; Yang, Gang ; Wang, Haolan ; Gao, Yu ; Niu, Lihua ; Wang, Longfei ; Zhang, Huanjun</creator><creatorcontrib>Hui, Cizhang ; Li, Yi ; Zhang, Wenlong ; Yang, Gang ; Wang, Haolan ; Gao, Yu ; Niu, Lihua ; Wang, Longfei ; Zhang, Huanjun</creatorcontrib><description>The simulation of nitrogen dynamics in urban channel confluences is essential for the evaluation and improvement of water quality. The omics-based modeling approaches that have been rapidly developed have been increasingly applied to characterize metabolisms of the microbial community and transformation of the associated materials. However, the transport of microorganisms and chemicals within and among different phases, which could be the rate-limiting step for the nitrogen dynamics, are always neglected or oversimplified in omics-based models. Therefore, this study proposes a novel simulation system coupling genomic and hydraulic information to simulate transport and transformation processes and provide predictions of nitrogen dynamics in a confluence. The proposed model was able to capture multiphase mass transport, microbial population dynamics, and nitrogen transformation and accurately predict gene abundances and nitrogen concentrations in both water and sediment; the mean relative errors were all lower than 40%. The model emphasized the importance of transport processes, which contributed more than 90% to gene abundances and chemical concentrations. Moreover, the simulation of reaction rates exhibited the specific nitrogen transformation processes in the confluence. The sulfide oxidation and the nitrate reduction and anaerobic ammonium oxidation, with the participation of the genes nap and hzo, respectively, were promoted as the main processes of nitrate and nitrite reduction.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c04018</identifier><identifier>PMID: 33760605</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Abundance ; Ammonium ; Anaerobiosis ; Contaminants in Aquatic and Terrestrial Environments ; Coupling ; Denitrification ; Dynamics ; Genomics ; Mass transport ; Microorganisms ; Nitrate reduction ; Nitrates ; Nitrites ; Nitrogen ; Oxidation ; Oxidation-Reduction ; Population dynamics ; Reduction ; Simulation ; Sulfides ; Transformations ; Transport processes ; Water quality</subject><ispartof>Environmental science &amp; technology, 2021-04, Vol.55 (8), p.4616-4628</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-9092188f5b3aa93391bc2b27cd2662de43bc13bafa8e89d908b3c0b7768284f73</citedby><cites>FETCH-LOGICAL-a361t-9092188f5b3aa93391bc2b27cd2662de43bc13bafa8e89d908b3c0b7768284f73</cites><orcidid>0000-0002-4300-690X ; 0000-0001-8136-7370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c04018$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c04018$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33760605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui, Cizhang</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhang, Wenlong</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Haolan</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Niu, Lihua</creatorcontrib><creatorcontrib>Wang, Longfei</creatorcontrib><creatorcontrib>Zhang, Huanjun</creatorcontrib><title>Coupling Genomics and Hydraulic Information to Predict the Nitrogen Dynamics in a Channel Confluence</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The simulation of nitrogen dynamics in urban channel confluences is essential for the evaluation and improvement of water quality. The omics-based modeling approaches that have been rapidly developed have been increasingly applied to characterize metabolisms of the microbial community and transformation of the associated materials. However, the transport of microorganisms and chemicals within and among different phases, which could be the rate-limiting step for the nitrogen dynamics, are always neglected or oversimplified in omics-based models. Therefore, this study proposes a novel simulation system coupling genomic and hydraulic information to simulate transport and transformation processes and provide predictions of nitrogen dynamics in a confluence. The proposed model was able to capture multiphase mass transport, microbial population dynamics, and nitrogen transformation and accurately predict gene abundances and nitrogen concentrations in both water and sediment; the mean relative errors were all lower than 40%. The model emphasized the importance of transport processes, which contributed more than 90% to gene abundances and chemical concentrations. Moreover, the simulation of reaction rates exhibited the specific nitrogen transformation processes in the confluence. The sulfide oxidation and the nitrate reduction and anaerobic ammonium oxidation, with the participation of the genes nap and hzo, respectively, were promoted as the main processes of nitrate and nitrite reduction.</description><subject>Abundance</subject><subject>Ammonium</subject><subject>Anaerobiosis</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Coupling</subject><subject>Denitrification</subject><subject>Dynamics</subject><subject>Genomics</subject><subject>Mass transport</subject><subject>Microorganisms</subject><subject>Nitrate reduction</subject><subject>Nitrates</subject><subject>Nitrites</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Population dynamics</subject><subject>Reduction</subject><subject>Simulation</subject><subject>Sulfides</subject><subject>Transformations</subject><subject>Transport processes</subject><subject>Water quality</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kTFPwzAQRi0EoqUwsyFLLEgo5Ww3jjOiAKUSAgaQ2CLHcairxC52MvTfk9DSAYnplve-O92H0DmBKQFKbqQKUx3aKSiYAREHaExiClEsYnKIxgCERSnjHyN0EsIKACgDcYxGjCUcOMRjVGauW9fGfuK5tq4xKmBpS_y4Kb3saqPwwlbON7I1zuLW4VevS6Na3C41fjatd5_a4ruNlT-qsVjibCmt1TXOnK3qTlulT9FRJeugz3Zzgt4f7t-yx-jpZb7Ibp8iyThpoxRSSoSo4oJJmTKWkkLRgiaqpJzTUs9YoQgrZCWFFmmZgiiYgiJJuKBiViVsgq62uWvvvrr-L3ljgtJ1La12XchpDDHjnBPao5d_0JXrvO2v6ykiZhSoGAJvtpTyLgSvq3ztTSP9JieQDwXkfQH5YO8K6I2LXW5XNLrc878f74HrLTCY-53_xX0DwtGQNA</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Hui, Cizhang</creator><creator>Li, Yi</creator><creator>Zhang, Wenlong</creator><creator>Yang, Gang</creator><creator>Wang, Haolan</creator><creator>Gao, Yu</creator><creator>Niu, Lihua</creator><creator>Wang, Longfei</creator><creator>Zhang, Huanjun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4300-690X</orcidid><orcidid>https://orcid.org/0000-0001-8136-7370</orcidid></search><sort><creationdate>20210420</creationdate><title>Coupling Genomics and Hydraulic Information to Predict the Nitrogen Dynamics in a Channel Confluence</title><author>Hui, Cizhang ; Li, Yi ; Zhang, Wenlong ; Yang, Gang ; Wang, Haolan ; Gao, Yu ; Niu, Lihua ; Wang, Longfei ; Zhang, Huanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-9092188f5b3aa93391bc2b27cd2662de43bc13bafa8e89d908b3c0b7768284f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Ammonium</topic><topic>Anaerobiosis</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Coupling</topic><topic>Denitrification</topic><topic>Dynamics</topic><topic>Genomics</topic><topic>Mass transport</topic><topic>Microorganisms</topic><topic>Nitrate reduction</topic><topic>Nitrates</topic><topic>Nitrites</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Population dynamics</topic><topic>Reduction</topic><topic>Simulation</topic><topic>Sulfides</topic><topic>Transformations</topic><topic>Transport processes</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Cizhang</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhang, Wenlong</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Haolan</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Niu, Lihua</creatorcontrib><creatorcontrib>Wang, Longfei</creatorcontrib><creatorcontrib>Zhang, Huanjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Cizhang</au><au>Li, Yi</au><au>Zhang, Wenlong</au><au>Yang, Gang</au><au>Wang, Haolan</au><au>Gao, Yu</au><au>Niu, Lihua</au><au>Wang, Longfei</au><au>Zhang, Huanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Genomics and Hydraulic Information to Predict the Nitrogen Dynamics in a Channel Confluence</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-04-20</date><risdate>2021</risdate><volume>55</volume><issue>8</issue><spage>4616</spage><epage>4628</epage><pages>4616-4628</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The simulation of nitrogen dynamics in urban channel confluences is essential for the evaluation and improvement of water quality. The omics-based modeling approaches that have been rapidly developed have been increasingly applied to characterize metabolisms of the microbial community and transformation of the associated materials. However, the transport of microorganisms and chemicals within and among different phases, which could be the rate-limiting step for the nitrogen dynamics, are always neglected or oversimplified in omics-based models. Therefore, this study proposes a novel simulation system coupling genomic and hydraulic information to simulate transport and transformation processes and provide predictions of nitrogen dynamics in a confluence. The proposed model was able to capture multiphase mass transport, microbial population dynamics, and nitrogen transformation and accurately predict gene abundances and nitrogen concentrations in both water and sediment; the mean relative errors were all lower than 40%. The model emphasized the importance of transport processes, which contributed more than 90% to gene abundances and chemical concentrations. Moreover, the simulation of reaction rates exhibited the specific nitrogen transformation processes in the confluence. The sulfide oxidation and the nitrate reduction and anaerobic ammonium oxidation, with the participation of the genes nap and hzo, respectively, were promoted as the main processes of nitrate and nitrite reduction.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33760605</pmid><doi>10.1021/acs.est.0c04018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4300-690X</orcidid><orcidid>https://orcid.org/0000-0001-8136-7370</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-04, Vol.55 (8), p.4616-4628
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2505366612
source ACS Publications; MEDLINE
subjects Abundance
Ammonium
Anaerobiosis
Contaminants in Aquatic and Terrestrial Environments
Coupling
Denitrification
Dynamics
Genomics
Mass transport
Microorganisms
Nitrate reduction
Nitrates
Nitrites
Nitrogen
Oxidation
Oxidation-Reduction
Population dynamics
Reduction
Simulation
Sulfides
Transformations
Transport processes
Water quality
title Coupling Genomics and Hydraulic Information to Predict the Nitrogen Dynamics in a Channel Confluence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Genomics%20and%20Hydraulic%20Information%20to%20Predict%20the%20Nitrogen%20Dynamics%20in%20a%20Channel%20Confluence&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Hui,%20Cizhang&rft.date=2021-04-20&rft.volume=55&rft.issue=8&rft.spage=4616&rft.epage=4628&rft.pages=4616-4628&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c04018&rft_dat=%3Cproquest_cross%3E2505366612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518420287&rft_id=info:pmid/33760605&rfr_iscdi=true