CircPITX1 Regulates Proliferation, Angiogenesis, Migration, Invasion, and Cell Cycle of Human Glioblastoma Cells by Targeting miR-584-5p/KPNB1 Axis

Recent researches reported that several circular RNAs (circRNAs) were associated with the glioblastoma (GBM) progression, while the regulatory role of circPITX1 remains unknown in GBM. The real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify circPITX1, miR-584-5p, and kary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2021-08, Vol.71 (8), p.1683-1695
Hauptverfasser: Cao, Yiqiang, Wang, Fei, Chen, Yu, Wang, Yonggang, Song, Hai, Long, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent researches reported that several circular RNAs (circRNAs) were associated with the glioblastoma (GBM) progression, while the regulatory role of circPITX1 remains unknown in GBM. The real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify circPITX1, miR-584-5p, and karyopherin b1 (KPNB1) expression in GBM tissues and cells. The proliferation capability of cells was analyzed by Cell Counting Kit-8 (CCK-8) and colony-forming assays. The matrigel angiogenesis assay was used to assess tube formation in GBM cells. Flow cytometry assays were conducted to evaluate the cell cycle distribution of GBM cells. The migration and invasion assays were assessed by transwell assay. The Western blot assay was employed to quantify the protein expression level in GBM tissues and cells. The targets of circPITX1 and miR-584-5p were confirmed by dual-luciferase reporter and RNA pull-down assays. A xenograft experiment in nude mice was used to assess the functional role of circPITX1 in vivo. CircPITX1 was obviously overexpressed in GBM tissues and cells when compared with negative groups. The functional experiment implied that knockdown of circPITX1 suppressed proliferation, angiogenesis, migration, invasion, and tumor growth in vivo along with induced cell cycle arrest of GBM cells. Furthermore, miR-584-5p was a target gene of circPITX1, and knockdown of miR-584-5p could abolish circPITX1 silencing-induced effects on GBM cells. KPNB1 was a target gene of miR-584-5p, and functional experiments revealed that overexpression of miR-584-5p repressed proliferation, angiogenesis, migration, invasion, and cell cycle process in GBM cells by targeting KPNB1. Mechanistically, circPITX1/miR-584-5p/KPNB1 axis regulated GBM process via mediating proliferation, angiogenesis, migration, invasion, and cell cycle process of GBM cells.
ISSN:0895-8696
1559-1166
DOI:10.1007/s12031-021-01820-y