One‐Step All‐Aqueous Interfacial Assembly of Robust Membranes for Long‐Term Encapsulation and Culture of Adherent Stem/Stromal Cells

The therapeutic effectiveness and biological relevance of technologies based on adherent cells depend on platforms that enable long‐term culture in controlled environments. Liquid‐core capsules have been suggested as semipermeable moieties with spatial homogeneity due to the high mobility of all com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2021-05, Vol.10 (10), p.e2100266-n/a
Hauptverfasser: Vilabril, Sara, Nadine, Sara, Neves, Catarina M. S. S., Correia, Clara R., Freire, Mara G., Coutinho, João A. P., Oliveira, Mariana B., Mano, João F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2100266
container_title Advanced healthcare materials
container_volume 10
creator Vilabril, Sara
Nadine, Sara
Neves, Catarina M. S. S.
Correia, Clara R.
Freire, Mara G.
Coutinho, João A. P.
Oliveira, Mariana B.
Mano, João F.
description The therapeutic effectiveness and biological relevance of technologies based on adherent cells depend on platforms that enable long‐term culture in controlled environments. Liquid‐core capsules have been suggested as semipermeable moieties with spatial homogeneity due to the high mobility of all components in their core. The lack of cell‐adhesive sites in liquid‐core structures often hampers their use as platforms for stem cell‐based technologies for long‐term survival and cell‐directed self‐organization. Here, the one‐step fast formation of robust polymeric capsules formed by interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment, compatible with the simultaneous encapsulation of mesenchymal stem/stromal cells (MSCs) and microcarriers, is described. The adhesion of umbilical cord MSCs to polymeric microcarriers enables their aggregation and culture for more than 21 days in capsules prepared either manually by dropwise addition, or by scalable electrohydrodynamic atomization, generating robust and stable capsules. Cell aggregation and secretion overtime can be tailored by providing cells with static or dynamic (bioreactor) environments. Robust polymeric capsules are produced using a one‐step rapid process based on the interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment. Two processing methodologies are used to produce millimetric or micrometric capsules and characterized regarding their size dispersity, thickness, robustness, and porosity. Animal cells are successfully coencapsulated with microcarriers as cell‐adhesion sites, under static or dynamic condition, for 21 days.
doi_str_mv 10.1002/adhm.202100266
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2505362059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528845420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-835d9d96c779244ee51d902910f3f476fffc187ef5f8967b2161511dc3fa3d493</originalsourceid><addsrcrecordid>eNqFkU9v2yAYxtG0aY2yXneckHbZJSlgg83RytKmUqpI_XO2iHlZXWHIwFaVW8899TP2kxQrXSbtMi68wO95eF89CH2lZE4JYWdK33dzRth4EOIDmjAq2YwJLj8e65ycoNMYH0haglNR0s_oJMuK9ECKCXreOHh9ernpYYcra1NZ_R7ADxFfuh6CUU2rLK5ihG5r99gbfO23Q-zxVboIykHExge89u5X0t5C6PDSNWoXB6v61jusnMaLwfZDgFFd6XsI4HqcfuzObvrgu-S_AGvjF_TJKBvh9H2forvz5e1iNVtvLi4X1XrW5JyIWZlxLbUUTVFIlucAnGpJmKTEZCYvhDGmoWUBhptSimLLqKCcUt1kRmU6l9kU_Tj47oJPs8a-7trYpA7SNGnwmnHCM8EIH9Hv_6APfggudZcoVpY5zxlJ1PxANcHHGMDUu9B2KuxrSuoxm3oMqj4GlQTf3m2HbQf6iP-JJQHyADy2Fvb_saurn6urv-Zv4x-hyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528845420</pqid></control><display><type>article</type><title>One‐Step All‐Aqueous Interfacial Assembly of Robust Membranes for Long‐Term Encapsulation and Culture of Adherent Stem/Stromal Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vilabril, Sara ; Nadine, Sara ; Neves, Catarina M. S. S. ; Correia, Clara R. ; Freire, Mara G. ; Coutinho, João A. P. ; Oliveira, Mariana B. ; Mano, João F.</creator><creatorcontrib>Vilabril, Sara ; Nadine, Sara ; Neves, Catarina M. S. S. ; Correia, Clara R. ; Freire, Mara G. ; Coutinho, João A. P. ; Oliveira, Mariana B. ; Mano, João F.</creatorcontrib><description>The therapeutic effectiveness and biological relevance of technologies based on adherent cells depend on platforms that enable long‐term culture in controlled environments. Liquid‐core capsules have been suggested as semipermeable moieties with spatial homogeneity due to the high mobility of all components in their core. The lack of cell‐adhesive sites in liquid‐core structures often hampers their use as platforms for stem cell‐based technologies for long‐term survival and cell‐directed self‐organization. Here, the one‐step fast formation of robust polymeric capsules formed by interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment, compatible with the simultaneous encapsulation of mesenchymal stem/stromal cells (MSCs) and microcarriers, is described. The adhesion of umbilical cord MSCs to polymeric microcarriers enables their aggregation and culture for more than 21 days in capsules prepared either manually by dropwise addition, or by scalable electrohydrodynamic atomization, generating robust and stable capsules. Cell aggregation and secretion overtime can be tailored by providing cells with static or dynamic (bioreactor) environments. Robust polymeric capsules are produced using a one‐step rapid process based on the interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment. Two processing methodologies are used to produce millimetric or micrometric capsules and characterized regarding their size dispersity, thickness, robustness, and porosity. Animal cells are successfully coencapsulated with microcarriers as cell‐adhesion sites, under static or dynamic condition, for 21 days.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202100266</identifier><identifier>PMID: 33764007</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adherent cells ; Agglomeration ; all‐aqueous fabrication ; Aqueous environments ; aqueous two‐phase systems ; Atomizing ; Biological effects ; Bioreactors ; Cell aggregation ; Cell culture ; Cell survival ; cell‐laden capsules ; Electrohydrodynamics ; Encapsulation ; Homogeneity ; interfacial complexation ; Mesenchyme ; Platforms ; Polyelectrolytes ; Robustness ; Stem cells ; Stromal cells ; Umbilical cord</subject><ispartof>Advanced healthcare materials, 2021-05, Vol.10 (10), p.e2100266-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-835d9d96c779244ee51d902910f3f476fffc187ef5f8967b2161511dc3fa3d493</citedby><cites>FETCH-LOGICAL-c4506-835d9d96c779244ee51d902910f3f476fffc187ef5f8967b2161511dc3fa3d493</cites><orcidid>0000-0002-2342-3765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202100266$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202100266$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33764007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilabril, Sara</creatorcontrib><creatorcontrib>Nadine, Sara</creatorcontrib><creatorcontrib>Neves, Catarina M. S. S.</creatorcontrib><creatorcontrib>Correia, Clara R.</creatorcontrib><creatorcontrib>Freire, Mara G.</creatorcontrib><creatorcontrib>Coutinho, João A. P.</creatorcontrib><creatorcontrib>Oliveira, Mariana B.</creatorcontrib><creatorcontrib>Mano, João F.</creatorcontrib><title>One‐Step All‐Aqueous Interfacial Assembly of Robust Membranes for Long‐Term Encapsulation and Culture of Adherent Stem/Stromal Cells</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The therapeutic effectiveness and biological relevance of technologies based on adherent cells depend on platforms that enable long‐term culture in controlled environments. Liquid‐core capsules have been suggested as semipermeable moieties with spatial homogeneity due to the high mobility of all components in their core. The lack of cell‐adhesive sites in liquid‐core structures often hampers their use as platforms for stem cell‐based technologies for long‐term survival and cell‐directed self‐organization. Here, the one‐step fast formation of robust polymeric capsules formed by interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment, compatible with the simultaneous encapsulation of mesenchymal stem/stromal cells (MSCs) and microcarriers, is described. The adhesion of umbilical cord MSCs to polymeric microcarriers enables their aggregation and culture for more than 21 days in capsules prepared either manually by dropwise addition, or by scalable electrohydrodynamic atomization, generating robust and stable capsules. Cell aggregation and secretion overtime can be tailored by providing cells with static or dynamic (bioreactor) environments. Robust polymeric capsules are produced using a one‐step rapid process based on the interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment. Two processing methodologies are used to produce millimetric or micrometric capsules and characterized regarding their size dispersity, thickness, robustness, and porosity. Animal cells are successfully coencapsulated with microcarriers as cell‐adhesion sites, under static or dynamic condition, for 21 days.</description><subject>Adherent cells</subject><subject>Agglomeration</subject><subject>all‐aqueous fabrication</subject><subject>Aqueous environments</subject><subject>aqueous two‐phase systems</subject><subject>Atomizing</subject><subject>Biological effects</subject><subject>Bioreactors</subject><subject>Cell aggregation</subject><subject>Cell culture</subject><subject>Cell survival</subject><subject>cell‐laden capsules</subject><subject>Electrohydrodynamics</subject><subject>Encapsulation</subject><subject>Homogeneity</subject><subject>interfacial complexation</subject><subject>Mesenchyme</subject><subject>Platforms</subject><subject>Polyelectrolytes</subject><subject>Robustness</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Umbilical cord</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v2yAYxtG0aY2yXneckHbZJSlgg83RytKmUqpI_XO2iHlZXWHIwFaVW8899TP2kxQrXSbtMi68wO95eF89CH2lZE4JYWdK33dzRth4EOIDmjAq2YwJLj8e65ycoNMYH0haglNR0s_oJMuK9ECKCXreOHh9ernpYYcra1NZ_R7ADxFfuh6CUU2rLK5ihG5r99gbfO23Q-zxVboIykHExge89u5X0t5C6PDSNWoXB6v61jusnMaLwfZDgFFd6XsI4HqcfuzObvrgu-S_AGvjF_TJKBvh9H2forvz5e1iNVtvLi4X1XrW5JyIWZlxLbUUTVFIlucAnGpJmKTEZCYvhDGmoWUBhptSimLLqKCcUt1kRmU6l9kU_Tj47oJPs8a-7trYpA7SNGnwmnHCM8EIH9Hv_6APfggudZcoVpY5zxlJ1PxANcHHGMDUu9B2KuxrSuoxm3oMqj4GlQTf3m2HbQf6iP-JJQHyADy2Fvb_saurn6urv-Zv4x-hyA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Vilabril, Sara</creator><creator>Nadine, Sara</creator><creator>Neves, Catarina M. S. S.</creator><creator>Correia, Clara R.</creator><creator>Freire, Mara G.</creator><creator>Coutinho, João A. P.</creator><creator>Oliveira, Mariana B.</creator><creator>Mano, João F.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2342-3765</orcidid></search><sort><creationdate>20210501</creationdate><title>One‐Step All‐Aqueous Interfacial Assembly of Robust Membranes for Long‐Term Encapsulation and Culture of Adherent Stem/Stromal Cells</title><author>Vilabril, Sara ; Nadine, Sara ; Neves, Catarina M. S. S. ; Correia, Clara R. ; Freire, Mara G. ; Coutinho, João A. P. ; Oliveira, Mariana B. ; Mano, João F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-835d9d96c779244ee51d902910f3f476fffc187ef5f8967b2161511dc3fa3d493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adherent cells</topic><topic>Agglomeration</topic><topic>all‐aqueous fabrication</topic><topic>Aqueous environments</topic><topic>aqueous two‐phase systems</topic><topic>Atomizing</topic><topic>Biological effects</topic><topic>Bioreactors</topic><topic>Cell aggregation</topic><topic>Cell culture</topic><topic>Cell survival</topic><topic>cell‐laden capsules</topic><topic>Electrohydrodynamics</topic><topic>Encapsulation</topic><topic>Homogeneity</topic><topic>interfacial complexation</topic><topic>Mesenchyme</topic><topic>Platforms</topic><topic>Polyelectrolytes</topic><topic>Robustness</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Umbilical cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilabril, Sara</creatorcontrib><creatorcontrib>Nadine, Sara</creatorcontrib><creatorcontrib>Neves, Catarina M. S. S.</creatorcontrib><creatorcontrib>Correia, Clara R.</creatorcontrib><creatorcontrib>Freire, Mara G.</creatorcontrib><creatorcontrib>Coutinho, João A. P.</creatorcontrib><creatorcontrib>Oliveira, Mariana B.</creatorcontrib><creatorcontrib>Mano, João F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilabril, Sara</au><au>Nadine, Sara</au><au>Neves, Catarina M. S. S.</au><au>Correia, Clara R.</au><au>Freire, Mara G.</au><au>Coutinho, João A. P.</au><au>Oliveira, Mariana B.</au><au>Mano, João F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One‐Step All‐Aqueous Interfacial Assembly of Robust Membranes for Long‐Term Encapsulation and Culture of Adherent Stem/Stromal Cells</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>10</volume><issue>10</issue><spage>e2100266</spage><epage>n/a</epage><pages>e2100266-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>The therapeutic effectiveness and biological relevance of technologies based on adherent cells depend on platforms that enable long‐term culture in controlled environments. Liquid‐core capsules have been suggested as semipermeable moieties with spatial homogeneity due to the high mobility of all components in their core. The lack of cell‐adhesive sites in liquid‐core structures often hampers their use as platforms for stem cell‐based technologies for long‐term survival and cell‐directed self‐organization. Here, the one‐step fast formation of robust polymeric capsules formed by interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment, compatible with the simultaneous encapsulation of mesenchymal stem/stromal cells (MSCs) and microcarriers, is described. The adhesion of umbilical cord MSCs to polymeric microcarriers enables their aggregation and culture for more than 21 days in capsules prepared either manually by dropwise addition, or by scalable electrohydrodynamic atomization, generating robust and stable capsules. Cell aggregation and secretion overtime can be tailored by providing cells with static or dynamic (bioreactor) environments. Robust polymeric capsules are produced using a one‐step rapid process based on the interfacial complexation of oppositely charged polyelectrolytes in an all‐aqueous environment. Two processing methodologies are used to produce millimetric or micrometric capsules and characterized regarding their size dispersity, thickness, robustness, and porosity. Animal cells are successfully coencapsulated with microcarriers as cell‐adhesion sites, under static or dynamic condition, for 21 days.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33764007</pmid><doi>10.1002/adhm.202100266</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2342-3765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2021-05, Vol.10 (10), p.e2100266-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2505362059
source Wiley Online Library Journals Frontfile Complete
subjects Adherent cells
Agglomeration
all‐aqueous fabrication
Aqueous environments
aqueous two‐phase systems
Atomizing
Biological effects
Bioreactors
Cell aggregation
Cell culture
Cell survival
cell‐laden capsules
Electrohydrodynamics
Encapsulation
Homogeneity
interfacial complexation
Mesenchyme
Platforms
Polyelectrolytes
Robustness
Stem cells
Stromal cells
Umbilical cord
title One‐Step All‐Aqueous Interfacial Assembly of Robust Membranes for Long‐Term Encapsulation and Culture of Adherent Stem/Stromal Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%E2%80%90Step%20All%E2%80%90Aqueous%20Interfacial%20Assembly%20of%20Robust%20Membranes%20for%20Long%E2%80%90Term%20Encapsulation%20and%20Culture%20of%20Adherent%20Stem/Stromal%20Cells&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Vilabril,%20Sara&rft.date=2021-05-01&rft.volume=10&rft.issue=10&rft.spage=e2100266&rft.epage=n/a&rft.pages=e2100266-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202100266&rft_dat=%3Cproquest_cross%3E2528845420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528845420&rft_id=info:pmid/33764007&rfr_iscdi=true