Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons
The hydroxyl and peroxyl radicals, particularly the former, occur abundantly and damage almost all types of materials. Polycyclic aromatic hydrocarbons (PAHs) and their polyradicals (all hydrogens removed) have been considered as models for graphene in some recent studies. Geometries of different ad...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2021-04, Vol.27 (4), p.112-112, Article 112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | 4 |
container_start_page | 112 |
container_title | Journal of molecular modeling |
container_volume | 27 |
creator | Yadav, Amarjeet Tiwari, Manish Kumar Kumar, Deep Kumar, Devesh |
description | The hydroxyl and peroxyl radicals, particularly the former, occur abundantly and damage almost all types of materials. Polycyclic aromatic hydrocarbons (PAHs) and their polyradicals (all hydrogens removed) have been considered as models for graphene in some recent studies. Geometries of different adducts of polyradicals of two small PAHs having four and nine benzene rings with an OH or OOH radical each were optimized employing unrestricted density functional theory and two different density functionals. The ground states of all the adducts involving the PAHs had doublet spin multiplicity while those involving the polyradicals had doublet, quartet, sextet, or octet spin multiplicity that was decided on the basis of calculated minimum total energies for optimized geometries. Binding energies of the adducts of an OH or OOH radical at the different sites of the polyradicals of PAHs showed that the OH radical would bind with these systems much more strongly than the OOH radical while both the radicals would bind much more strongly with the polyradicals than with the PAHs. Furthermore, both the OH and OOH radicals are found to bind at the edges of the polyradicals much more strongly than at their interior sites. It is shown that polyradicals can serve as efficient scavengers of OH and OOH radicals and therefore, these materials can be used to protect both biological and non-biological systems from damage due to reactions with these radicals. |
doi_str_mv | 10.1007/s00894-021-04737-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2505361415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504838712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-bb3af8e7a6724f22e3e66b4ff71d14dd0c94cadc5ed66a5b3ed3a0ea77052da93</originalsourceid><addsrcrecordid>eNp9kL1u2zAUhYmgRWKkfoEMhYAsWZRc_ktjYKRNAQMe2k4diCuScmRIokvaDfT2ZezEBTJ0uvz5ziHxEXJF4ZYC6LsEUNWiBEZLEJrr8vmMzKAWVSmB8Q9kRhWFktUCLsg8pQ0AUCaVZOycXHCuFde8npFf3y3-8eO6G9dFaIvVY4GjK1Z5RnSdxT4VzVRsQz-d9hlLA_b94dROtu9sgTEMuMuLp8nFYDE2YUyfyMc2B_z8dV6Sn18efiwey-Xq67fF_bK0XMtd2TQc28prVJqJljHPvVKNaFtNHRXOga2FRWeld0qhbLh3HMGj1iCZw5pfkptj7zaG33ufdmbokvV9j6MP-2SYBMkVFVRm9Podugn7OObfvVCi4pWmLFPsSNkYUoq-NdvYDRgnQ8G82DdH-ybbNwf75jmHPr9W75vBu1PkzXUG-BFI-Wpc-_jv7f_U_gWFf5Cd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504838712</pqid></control><display><type>article</type><title>Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yadav, Amarjeet ; Tiwari, Manish Kumar ; Kumar, Deep ; Kumar, Devesh</creator><creatorcontrib>Yadav, Amarjeet ; Tiwari, Manish Kumar ; Kumar, Deep ; Kumar, Devesh</creatorcontrib><description>The hydroxyl and peroxyl radicals, particularly the former, occur abundantly and damage almost all types of materials. Polycyclic aromatic hydrocarbons (PAHs) and their polyradicals (all hydrogens removed) have been considered as models for graphene in some recent studies. Geometries of different adducts of polyradicals of two small PAHs having four and nine benzene rings with an OH or OOH radical each were optimized employing unrestricted density functional theory and two different density functionals. The ground states of all the adducts involving the PAHs had doublet spin multiplicity while those involving the polyradicals had doublet, quartet, sextet, or octet spin multiplicity that was decided on the basis of calculated minimum total energies for optimized geometries. Binding energies of the adducts of an OH or OOH radical at the different sites of the polyradicals of PAHs showed that the OH radical would bind with these systems much more strongly than the OOH radical while both the radicals would bind much more strongly with the polyradicals than with the PAHs. Furthermore, both the OH and OOH radicals are found to bind at the edges of the polyradicals much more strongly than at their interior sites. It is shown that polyradicals can serve as efficient scavengers of OH and OOH radicals and therefore, these materials can be used to protect both biological and non-biological systems from damage due to reactions with these radicals.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-021-04737-w</identifier><identifier>PMID: 33763739</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adducts ; Benzene ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Damage ; Density functional theory ; Graphene ; Molecular Medicine ; Original Paper ; Polycyclic aromatic hydrocarbons ; Scavenging ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2021-04, Vol.27 (4), p.112-112, Article 112</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-bb3af8e7a6724f22e3e66b4ff71d14dd0c94cadc5ed66a5b3ed3a0ea77052da93</citedby><cites>FETCH-LOGICAL-c375t-bb3af8e7a6724f22e3e66b4ff71d14dd0c94cadc5ed66a5b3ed3a0ea77052da93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-021-04737-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-021-04737-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33763739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Amarjeet</creatorcontrib><creatorcontrib>Tiwari, Manish Kumar</creatorcontrib><creatorcontrib>Kumar, Deep</creatorcontrib><creatorcontrib>Kumar, Devesh</creatorcontrib><title>Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>The hydroxyl and peroxyl radicals, particularly the former, occur abundantly and damage almost all types of materials. Polycyclic aromatic hydrocarbons (PAHs) and their polyradicals (all hydrogens removed) have been considered as models for graphene in some recent studies. Geometries of different adducts of polyradicals of two small PAHs having four and nine benzene rings with an OH or OOH radical each were optimized employing unrestricted density functional theory and two different density functionals. The ground states of all the adducts involving the PAHs had doublet spin multiplicity while those involving the polyradicals had doublet, quartet, sextet, or octet spin multiplicity that was decided on the basis of calculated minimum total energies for optimized geometries. Binding energies of the adducts of an OH or OOH radical at the different sites of the polyradicals of PAHs showed that the OH radical would bind with these systems much more strongly than the OOH radical while both the radicals would bind much more strongly with the polyradicals than with the PAHs. Furthermore, both the OH and OOH radicals are found to bind at the edges of the polyradicals much more strongly than at their interior sites. It is shown that polyradicals can serve as efficient scavengers of OH and OOH radicals and therefore, these materials can be used to protect both biological and non-biological systems from damage due to reactions with these radicals.</description><subject>Adducts</subject><subject>Benzene</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Damage</subject><subject>Density functional theory</subject><subject>Graphene</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Scavenging</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1u2zAUhYmgRWKkfoEMhYAsWZRc_ktjYKRNAQMe2k4diCuScmRIokvaDfT2ZezEBTJ0uvz5ziHxEXJF4ZYC6LsEUNWiBEZLEJrr8vmMzKAWVSmB8Q9kRhWFktUCLsg8pQ0AUCaVZOycXHCuFde8npFf3y3-8eO6G9dFaIvVY4GjK1Z5RnSdxT4VzVRsQz-d9hlLA_b94dROtu9sgTEMuMuLp8nFYDE2YUyfyMc2B_z8dV6Sn18efiwey-Xq67fF_bK0XMtd2TQc28prVJqJljHPvVKNaFtNHRXOga2FRWeld0qhbLh3HMGj1iCZw5pfkptj7zaG33ufdmbokvV9j6MP-2SYBMkVFVRm9Podugn7OObfvVCi4pWmLFPsSNkYUoq-NdvYDRgnQ8G82DdH-ybbNwf75jmHPr9W75vBu1PkzXUG-BFI-Wpc-_jv7f_U_gWFf5Cd</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yadav, Amarjeet</creator><creator>Tiwari, Manish Kumar</creator><creator>Kumar, Deep</creator><creator>Kumar, Devesh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210401</creationdate><title>Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons</title><author>Yadav, Amarjeet ; Tiwari, Manish Kumar ; Kumar, Deep ; Kumar, Devesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-bb3af8e7a6724f22e3e66b4ff71d14dd0c94cadc5ed66a5b3ed3a0ea77052da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adducts</topic><topic>Benzene</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Damage</topic><topic>Density functional theory</topic><topic>Graphene</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Scavenging</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Amarjeet</creatorcontrib><creatorcontrib>Tiwari, Manish Kumar</creatorcontrib><creatorcontrib>Kumar, Deep</creatorcontrib><creatorcontrib>Kumar, Devesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Amarjeet</au><au>Tiwari, Manish Kumar</au><au>Kumar, Deep</au><au>Kumar, Devesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>112</spage><epage>112</epage><pages>112-112</pages><artnum>112</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>The hydroxyl and peroxyl radicals, particularly the former, occur abundantly and damage almost all types of materials. Polycyclic aromatic hydrocarbons (PAHs) and their polyradicals (all hydrogens removed) have been considered as models for graphene in some recent studies. Geometries of different adducts of polyradicals of two small PAHs having four and nine benzene rings with an OH or OOH radical each were optimized employing unrestricted density functional theory and two different density functionals. The ground states of all the adducts involving the PAHs had doublet spin multiplicity while those involving the polyradicals had doublet, quartet, sextet, or octet spin multiplicity that was decided on the basis of calculated minimum total energies for optimized geometries. Binding energies of the adducts of an OH or OOH radical at the different sites of the polyradicals of PAHs showed that the OH radical would bind with these systems much more strongly than the OOH radical while both the radicals would bind much more strongly with the polyradicals than with the PAHs. Furthermore, both the OH and OOH radicals are found to bind at the edges of the polyradicals much more strongly than at their interior sites. It is shown that polyradicals can serve as efficient scavengers of OH and OOH radicals and therefore, these materials can be used to protect both biological and non-biological systems from damage due to reactions with these radicals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33763739</pmid><doi>10.1007/s00894-021-04737-w</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2021-04, Vol.27 (4), p.112-112, Article 112 |
issn | 1610-2940 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2505361415 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adducts Benzene Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Damage Density functional theory Graphene Molecular Medicine Original Paper Polycyclic aromatic hydrocarbons Scavenging Theoretical and Computational Chemistry |
title | Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scavenging%20of%20OH%20and%20OOH%20radicals%20by%20polyradicals%20of%20small%20polycyclic%20aromatic%20hydrocarbons&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Yadav,%20Amarjeet&rft.date=2021-04-01&rft.volume=27&rft.issue=4&rft.spage=112&rft.epage=112&rft.pages=112-112&rft.artnum=112&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-021-04737-w&rft_dat=%3Cproquest_cross%3E2504838712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504838712&rft_id=info:pmid/33763739&rfr_iscdi=true |