Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging

Photoacoustic (PA) imaging can revolutionize medical ultrasound by augmenting it with molecular information. However, clinical translation of PA imaging remains a challenge due to the limited viewing angles and imaging depth. Described here is a new robust algorithm called Superiorized Photo-Acousti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-07, Vol.40 (7), p.1888-1897
Hauptverfasser: Steinberg, Idan, Kim, Jeesu, Schneider, Martin K., Hyun, Dongwoon, Zlitni, Aimen, Hopper, Sarah M., Klap, Tal, Sonn, Geoffrey A., Dahl, Jeremy J., Kim, Chulhong, Gambhir, Sanjiv Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1897
container_issue 7
container_start_page 1888
container_title IEEE transactions on medical imaging
container_volume 40
creator Steinberg, Idan
Kim, Jeesu
Schneider, Martin K.
Hyun, Dongwoon
Zlitni, Aimen
Hopper, Sarah M.
Klap, Tal
Sonn, Geoffrey A.
Dahl, Jeremy J.
Kim, Chulhong
Gambhir, Sanjiv Sam
description Photoacoustic (PA) imaging can revolutionize medical ultrasound by augmenting it with molecular information. However, clinical translation of PA imaging remains a challenge due to the limited viewing angles and imaging depth. Described here is a new robust algorithm called Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER), designed to reconstruct PA images in real-time and to address the artifacts associated with limited viewing angles and imaging depth. The method utilizes precise forward modeling of the PA propagation and reception of signals while accounting for the effects of acoustic absorption, element size, shape, and sensitivity, as well as the transducer's impulse response and directivity pattern. A fast superiorized conjugate gradient algorithm is used for inversion. SPANNER is compared to three reconstruction algorithms: delay-and-sum (DAS), universal back-projection (UBP), and model-based reconstruction (MBR). All four algorithms are applied to both simulations and experimental data acquired from tissue-mimicking phantoms, ex vivo tissue samples, and in vivo imaging of the prostates in patients. Simulations and phantom experiments highlight the ability of SPANNER to improve contrast to background ratio by up to 20 dB compared to all other algorithms, as well as a 3-fold increase in axial resolution compared to DAS and UBP. Applying SPANNER on contrast-enhanced PA images acquired from prostate cancer patients yielded a statistically significant difference before and after contrast agent administration, while the other three image reconstruction methods did not, thus highlighting SPANNER's performance in differentiating intrinsic from extrinsic PA signals and its ability to quantify PA signals from the contrast agent more accurately.
doi_str_mv 10.1109/TMI.2021.3068181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2504777954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9383259</ieee_id><sourcerecordid>2504777954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-df1f9f9cf7dc5da8a73d14d6f971865c2609149d27685e2acb876beaf24058ac3</originalsourceid><addsrcrecordid>eNpdkctLW0EYxYdSqdF2XyiUC93o4qbzfixDiBqIUdRCd5fJPNKRmztx5t6C_vVOSHTh6lt8v3M4nAPAdwTHCEH1--F6PsYQozGBXCKJPoERYkzWmNG_n8EIYiFrCDk-Bic5P0KIKIPqCzgmRDDGOBoBez9sXQoxhRdnq9t_sY_1xMQh98FUy9jVy9la9-G_q-6ciV3u02D6ELvq7P52slzO7s4rH1M1bUMXjG73DvrNYL7R69Ctv4Ijr9vsvh3uKfhzMXuYXtWLm8v5dLKoDSW8r61HXnllvLCGWS21IBZRy70SSHJmMIcKUWWx4JI5rM1KCr5y2mMKmdSGnIKzve82xafB5b7ZhGxc2-rOlUQNZpAKIRSjBf31AX2MQ-pKukJRLggtjRYK7imTYs7J-Wabwkan5wbBZrdAUxZodgs0hwWK5OfBeFhtnH0XvFVegB97IDjn3t-KSIKZIq8INomt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546734068</pqid></control><display><type>article</type><title>Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Steinberg, Idan ; Kim, Jeesu ; Schneider, Martin K. ; Hyun, Dongwoon ; Zlitni, Aimen ; Hopper, Sarah M. ; Klap, Tal ; Sonn, Geoffrey A. ; Dahl, Jeremy J. ; Kim, Chulhong ; Gambhir, Sanjiv Sam</creator><creatorcontrib>Steinberg, Idan ; Kim, Jeesu ; Schneider, Martin K. ; Hyun, Dongwoon ; Zlitni, Aimen ; Hopper, Sarah M. ; Klap, Tal ; Sonn, Geoffrey A. ; Dahl, Jeremy J. ; Kim, Chulhong ; Gambhir, Sanjiv Sam</creatorcontrib><description>Photoacoustic (PA) imaging can revolutionize medical ultrasound by augmenting it with molecular information. However, clinical translation of PA imaging remains a challenge due to the limited viewing angles and imaging depth. Described here is a new robust algorithm called Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER), designed to reconstruct PA images in real-time and to address the artifacts associated with limited viewing angles and imaging depth. The method utilizes precise forward modeling of the PA propagation and reception of signals while accounting for the effects of acoustic absorption, element size, shape, and sensitivity, as well as the transducer's impulse response and directivity pattern. A fast superiorized conjugate gradient algorithm is used for inversion. SPANNER is compared to three reconstruction algorithms: delay-and-sum (DAS), universal back-projection (UBP), and model-based reconstruction (MBR). All four algorithms are applied to both simulations and experimental data acquired from tissue-mimicking phantoms, ex vivo tissue samples, and in vivo imaging of the prostates in patients. Simulations and phantom experiments highlight the ability of SPANNER to improve contrast to background ratio by up to 20 dB compared to all other algorithms, as well as a 3-fold increase in axial resolution compared to DAS and UBP. Applying SPANNER on contrast-enhanced PA images acquired from prostate cancer patients yielded a statistically significant difference before and after contrast agent administration, while the other three image reconstruction methods did not, thus highlighting SPANNER's performance in differentiating intrinsic from extrinsic PA signals and its ability to quantify PA signals from the contrast agent more accurately.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3068181</identifier><identifier>PMID: 33755561</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic absorption ; Acoustic propagation ; Acoustics ; Algorithms ; Contrast agents ; Data acquisition ; Directivity ; Image acquisition ; Image contrast ; Image enhancement ; Image processing ; Image reconstruction ; image reconstruction - iterative methods ; Image resolution ; Imaging ; Impulse response ; Medical imaging ; Mimicry ; molecular and cellular imaging ; Optical imaging ; Optoacoustic/photoacoustic imaging ; Patients ; prostate ; Prostate cancer ; Radio frequency ; Radiology ; Statistical analysis ; Statistical methods ; Viewing</subject><ispartof>IEEE transactions on medical imaging, 2021-07, Vol.40 (7), p.1888-1897</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-df1f9f9cf7dc5da8a73d14d6f971865c2609149d27685e2acb876beaf24058ac3</citedby><cites>FETCH-LOGICAL-c436t-df1f9f9cf7dc5da8a73d14d6f971865c2609149d27685e2acb876beaf24058ac3</cites><orcidid>0000-0002-2542-0234 ; 0000-0001-9877-452X ; 0000-0001-7249-1257 ; 0000-0002-1592-8026 ; 0000-0003-2625-8109 ; 0000-0001-9366-2174 ; 0000-0002-8142-4715 ; 0000-0002-0850-1956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9383259$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33755561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinberg, Idan</creatorcontrib><creatorcontrib>Kim, Jeesu</creatorcontrib><creatorcontrib>Schneider, Martin K.</creatorcontrib><creatorcontrib>Hyun, Dongwoon</creatorcontrib><creatorcontrib>Zlitni, Aimen</creatorcontrib><creatorcontrib>Hopper, Sarah M.</creatorcontrib><creatorcontrib>Klap, Tal</creatorcontrib><creatorcontrib>Sonn, Geoffrey A.</creatorcontrib><creatorcontrib>Dahl, Jeremy J.</creatorcontrib><creatorcontrib>Kim, Chulhong</creatorcontrib><creatorcontrib>Gambhir, Sanjiv Sam</creatorcontrib><title>Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Photoacoustic (PA) imaging can revolutionize medical ultrasound by augmenting it with molecular information. However, clinical translation of PA imaging remains a challenge due to the limited viewing angles and imaging depth. Described here is a new robust algorithm called Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER), designed to reconstruct PA images in real-time and to address the artifacts associated with limited viewing angles and imaging depth. The method utilizes precise forward modeling of the PA propagation and reception of signals while accounting for the effects of acoustic absorption, element size, shape, and sensitivity, as well as the transducer's impulse response and directivity pattern. A fast superiorized conjugate gradient algorithm is used for inversion. SPANNER is compared to three reconstruction algorithms: delay-and-sum (DAS), universal back-projection (UBP), and model-based reconstruction (MBR). All four algorithms are applied to both simulations and experimental data acquired from tissue-mimicking phantoms, ex vivo tissue samples, and in vivo imaging of the prostates in patients. Simulations and phantom experiments highlight the ability of SPANNER to improve contrast to background ratio by up to 20 dB compared to all other algorithms, as well as a 3-fold increase in axial resolution compared to DAS and UBP. Applying SPANNER on contrast-enhanced PA images acquired from prostate cancer patients yielded a statistically significant difference before and after contrast agent administration, while the other three image reconstruction methods did not, thus highlighting SPANNER's performance in differentiating intrinsic from extrinsic PA signals and its ability to quantify PA signals from the contrast agent more accurately.</description><subject>Acoustic absorption</subject><subject>Acoustic propagation</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Contrast agents</subject><subject>Data acquisition</subject><subject>Directivity</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>image reconstruction - iterative methods</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Impulse response</subject><subject>Medical imaging</subject><subject>Mimicry</subject><subject>molecular and cellular imaging</subject><subject>Optical imaging</subject><subject>Optoacoustic/photoacoustic imaging</subject><subject>Patients</subject><subject>prostate</subject><subject>Prostate cancer</subject><subject>Radio frequency</subject><subject>Radiology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Viewing</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkctLW0EYxYdSqdF2XyiUC93o4qbzfixDiBqIUdRCd5fJPNKRmztx5t6C_vVOSHTh6lt8v3M4nAPAdwTHCEH1--F6PsYQozGBXCKJPoERYkzWmNG_n8EIYiFrCDk-Bic5P0KIKIPqCzgmRDDGOBoBez9sXQoxhRdnq9t_sY_1xMQh98FUy9jVy9la9-G_q-6ciV3u02D6ELvq7P52slzO7s4rH1M1bUMXjG73DvrNYL7R69Ctv4Ijr9vsvh3uKfhzMXuYXtWLm8v5dLKoDSW8r61HXnllvLCGWS21IBZRy70SSHJmMIcKUWWx4JI5rM1KCr5y2mMKmdSGnIKzve82xafB5b7ZhGxc2-rOlUQNZpAKIRSjBf31AX2MQ-pKukJRLggtjRYK7imTYs7J-Wabwkan5wbBZrdAUxZodgs0hwWK5OfBeFhtnH0XvFVegB97IDjn3t-KSIKZIq8INomt</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Steinberg, Idan</creator><creator>Kim, Jeesu</creator><creator>Schneider, Martin K.</creator><creator>Hyun, Dongwoon</creator><creator>Zlitni, Aimen</creator><creator>Hopper, Sarah M.</creator><creator>Klap, Tal</creator><creator>Sonn, Geoffrey A.</creator><creator>Dahl, Jeremy J.</creator><creator>Kim, Chulhong</creator><creator>Gambhir, Sanjiv Sam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2542-0234</orcidid><orcidid>https://orcid.org/0000-0001-9877-452X</orcidid><orcidid>https://orcid.org/0000-0001-7249-1257</orcidid><orcidid>https://orcid.org/0000-0002-1592-8026</orcidid><orcidid>https://orcid.org/0000-0003-2625-8109</orcidid><orcidid>https://orcid.org/0000-0001-9366-2174</orcidid><orcidid>https://orcid.org/0000-0002-8142-4715</orcidid><orcidid>https://orcid.org/0000-0002-0850-1956</orcidid></search><sort><creationdate>20210701</creationdate><title>Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging</title><author>Steinberg, Idan ; Kim, Jeesu ; Schneider, Martin K. ; Hyun, Dongwoon ; Zlitni, Aimen ; Hopper, Sarah M. ; Klap, Tal ; Sonn, Geoffrey A. ; Dahl, Jeremy J. ; Kim, Chulhong ; Gambhir, Sanjiv Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-df1f9f9cf7dc5da8a73d14d6f971865c2609149d27685e2acb876beaf24058ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic absorption</topic><topic>Acoustic propagation</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Contrast agents</topic><topic>Data acquisition</topic><topic>Directivity</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>image reconstruction - iterative methods</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Impulse response</topic><topic>Medical imaging</topic><topic>Mimicry</topic><topic>molecular and cellular imaging</topic><topic>Optical imaging</topic><topic>Optoacoustic/photoacoustic imaging</topic><topic>Patients</topic><topic>prostate</topic><topic>Prostate cancer</topic><topic>Radio frequency</topic><topic>Radiology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Viewing</topic><toplevel>online_resources</toplevel><creatorcontrib>Steinberg, Idan</creatorcontrib><creatorcontrib>Kim, Jeesu</creatorcontrib><creatorcontrib>Schneider, Martin K.</creatorcontrib><creatorcontrib>Hyun, Dongwoon</creatorcontrib><creatorcontrib>Zlitni, Aimen</creatorcontrib><creatorcontrib>Hopper, Sarah M.</creatorcontrib><creatorcontrib>Klap, Tal</creatorcontrib><creatorcontrib>Sonn, Geoffrey A.</creatorcontrib><creatorcontrib>Dahl, Jeremy J.</creatorcontrib><creatorcontrib>Kim, Chulhong</creatorcontrib><creatorcontrib>Gambhir, Sanjiv Sam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinberg, Idan</au><au>Kim, Jeesu</au><au>Schneider, Martin K.</au><au>Hyun, Dongwoon</au><au>Zlitni, Aimen</au><au>Hopper, Sarah M.</au><au>Klap, Tal</au><au>Sonn, Geoffrey A.</au><au>Dahl, Jeremy J.</au><au>Kim, Chulhong</au><au>Gambhir, Sanjiv Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>40</volume><issue>7</issue><spage>1888</spage><epage>1897</epage><pages>1888-1897</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Photoacoustic (PA) imaging can revolutionize medical ultrasound by augmenting it with molecular information. However, clinical translation of PA imaging remains a challenge due to the limited viewing angles and imaging depth. Described here is a new robust algorithm called Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER), designed to reconstruct PA images in real-time and to address the artifacts associated with limited viewing angles and imaging depth. The method utilizes precise forward modeling of the PA propagation and reception of signals while accounting for the effects of acoustic absorption, element size, shape, and sensitivity, as well as the transducer's impulse response and directivity pattern. A fast superiorized conjugate gradient algorithm is used for inversion. SPANNER is compared to three reconstruction algorithms: delay-and-sum (DAS), universal back-projection (UBP), and model-based reconstruction (MBR). All four algorithms are applied to both simulations and experimental data acquired from tissue-mimicking phantoms, ex vivo tissue samples, and in vivo imaging of the prostates in patients. Simulations and phantom experiments highlight the ability of SPANNER to improve contrast to background ratio by up to 20 dB compared to all other algorithms, as well as a 3-fold increase in axial resolution compared to DAS and UBP. Applying SPANNER on contrast-enhanced PA images acquired from prostate cancer patients yielded a statistically significant difference before and after contrast agent administration, while the other three image reconstruction methods did not, thus highlighting SPANNER's performance in differentiating intrinsic from extrinsic PA signals and its ability to quantify PA signals from the contrast agent more accurately.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33755561</pmid><doi>10.1109/TMI.2021.3068181</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2542-0234</orcidid><orcidid>https://orcid.org/0000-0001-9877-452X</orcidid><orcidid>https://orcid.org/0000-0001-7249-1257</orcidid><orcidid>https://orcid.org/0000-0002-1592-8026</orcidid><orcidid>https://orcid.org/0000-0003-2625-8109</orcidid><orcidid>https://orcid.org/0000-0001-9366-2174</orcidid><orcidid>https://orcid.org/0000-0002-8142-4715</orcidid><orcidid>https://orcid.org/0000-0002-0850-1956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2021-07, Vol.40 (7), p.1888-1897
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2504777954
source IEEE Electronic Library (IEL)
subjects Acoustic absorption
Acoustic propagation
Acoustics
Algorithms
Contrast agents
Data acquisition
Directivity
Image acquisition
Image contrast
Image enhancement
Image processing
Image reconstruction
image reconstruction - iterative methods
Image resolution
Imaging
Impulse response
Medical imaging
Mimicry
molecular and cellular imaging
Optical imaging
Optoacoustic/photoacoustic imaging
Patients
prostate
Prostate cancer
Radio frequency
Radiology
Statistical analysis
Statistical methods
Viewing
title Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superiorized%20Photo-Acoustic%20Non-NEgative%20Reconstruction%20(SPANNER)%20for%20Clinical%20Photoacoustic%20Imaging&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Steinberg,%20Idan&rft.date=2021-07-01&rft.volume=40&rft.issue=7&rft.spage=1888&rft.epage=1897&rft.pages=1888-1897&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3068181&rft_dat=%3Cproquest_cross%3E2504777954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546734068&rft_id=info:pmid/33755561&rft_ieee_id=9383259&rfr_iscdi=true