The effect of Allium cepa extract on the chitosan/PLGA scaffolds bioactivity
Allium cepa extracts (AC) allow the fabrication of a biomaterial that, together with chitosan and PLGA, could be osteoconductive and promote a better and faster regeneration of bone tissue, with biocompatibility and biomineralization properties. In this work, scaffolds were developed by the thermall...
Gespeichert in:
Veröffentlicht in: | Journal of applied biomaterials & functional materials 2021, Vol.19, p.2280800021989701-2280800021989701 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2280800021989701 |
---|---|
container_issue | |
container_start_page | 2280800021989701 |
container_title | Journal of applied biomaterials & functional materials |
container_volume | 19 |
creator | Monárrez-Cordero, Blanca Elizabeth Rodríguez-González, Claudia Alejandra Valencia-Gómez, Laura Elizabeth Hernández-Paz, Juan Francisco Martel-Estrada, Santos Adriana Camacho-Montes, Héctor Olivas-Armendáriz, Imelda |
description | Allium cepa extracts (AC) allow the fabrication of a biomaterial that, together with chitosan and PLGA, could be osteoconductive and promote a better and faster regeneration of bone tissue, with biocompatibility and biomineralization properties. In this work, scaffolds were developed by the thermally induced phase separation (TIPS) technique. An in vitro bioactivity analysis was performed using simulated body fluid (SBF). Scanning electron microscopy (SEM), energy dispersion spectroscopy, and infrared spectroscopy were used for the scaffolds characterization. The results showed a structure with a pore size distribution between 50 and 100 μm, which allowed the uniform formation of biological apatite crystals on the surface of the scaffolds. The chitosan/policaprolactone/Allium cepa scaffold (ChPAC) showed the most promising results with a ratio of P/Ca between 1.6 and 1.7, a value very close to that of hydroxyapatite. |
doi_str_mv | 10.1177/2280800021989701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2504777014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2280800021989701</sage_id><sourcerecordid>2504777014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-a082ba12609195fbfaac2092b3c494e081d55287348cdc946c25fe241482f33</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMobsy9-yQBX3ypy1eb5HEMnUJBwb2XNE1cR9vMphX33y9l84OBT_dy-N1zDweAa4zuMeZ8RohAAiFEsBSSI3wGxoMUDdr5n30Ept5vwoIETmRML8GIUh5zmogxSFdrA421RnfQWTivqrKvoTZbBc1X16pBbmAXIL0uO-dVM3tNl3PotbLWVYWHeekCVX6W3e4KXFhVeTM9zgl4e3xYLZ6i9GX5vJinkWaId5FCguQKkwRJLGObW6U0QZLkVDPJTIhZxDERnDKhCy1ZoklsDWGYCWIpnYC7g-u2dR-98V1Wl16bqlKNcb3PSIwY56EQFtDbE3Tj-rYJ2TKSYEqQSAQOFDpQunXet8Zm27asVbvLMMqGqrPTqsPJzdG4z2tT_Bx8FxuA6AB49W5-v_5ruActsoK1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613208681</pqid></control><display><type>article</type><title>The effect of Allium cepa extract on the chitosan/PLGA scaffolds bioactivity</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Alma/SFX Local Collection</source><creator>Monárrez-Cordero, Blanca Elizabeth ; Rodríguez-González, Claudia Alejandra ; Valencia-Gómez, Laura Elizabeth ; Hernández-Paz, Juan Francisco ; Martel-Estrada, Santos Adriana ; Camacho-Montes, Héctor ; Olivas-Armendáriz, Imelda</creator><creatorcontrib>Monárrez-Cordero, Blanca Elizabeth ; Rodríguez-González, Claudia Alejandra ; Valencia-Gómez, Laura Elizabeth ; Hernández-Paz, Juan Francisco ; Martel-Estrada, Santos Adriana ; Camacho-Montes, Héctor ; Olivas-Armendáriz, Imelda</creatorcontrib><description>Allium cepa extracts (AC) allow the fabrication of a biomaterial that, together with chitosan and PLGA, could be osteoconductive and promote a better and faster regeneration of bone tissue, with biocompatibility and biomineralization properties. In this work, scaffolds were developed by the thermally induced phase separation (TIPS) technique. An in vitro bioactivity analysis was performed using simulated body fluid (SBF). Scanning electron microscopy (SEM), energy dispersion spectroscopy, and infrared spectroscopy were used for the scaffolds characterization. The results showed a structure with a pore size distribution between 50 and 100 μm, which allowed the uniform formation of biological apatite crystals on the surface of the scaffolds. The chitosan/policaprolactone/Allium cepa scaffold (ChPAC) showed the most promising results with a ratio of P/Ca between 1.6 and 1.7, a value very close to that of hydroxyapatite.</description><identifier>ISSN: 2280-8000</identifier><identifier>EISSN: 2280-8000</identifier><identifier>DOI: 10.1177/2280800021989701</identifier><identifier>PMID: 33757368</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Allium cepa ; Apatite ; Biocompatibility ; Biological activity ; Biomaterials ; Biomedical materials ; Body fluids ; Bone growth ; Chitosan ; Crystals ; Fabrication ; Hydroxyapatite ; In vitro methods and tests ; Infrared spectroscopy ; Mineralization ; Osteoconduction ; Phase separation ; Polylactide-co-glycolide ; Pore size ; Pore size distribution ; Regeneration ; Scaffolds ; Scanning electron microscopy ; Size distribution ; Spectrum analysis</subject><ispartof>Journal of applied biomaterials & functional materials, 2021, Vol.19, p.2280800021989701-2280800021989701</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-a082ba12609195fbfaac2092b3c494e081d55287348cdc946c25fe241482f33</citedby><cites>FETCH-LOGICAL-c407t-a082ba12609195fbfaac2092b3c494e081d55287348cdc946c25fe241482f33</cites><orcidid>0000-0003-2233-0310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/2280800021989701$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/2280800021989701$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,4010,21945,27830,27900,27901,27902,44921,45309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33757368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monárrez-Cordero, Blanca Elizabeth</creatorcontrib><creatorcontrib>Rodríguez-González, Claudia Alejandra</creatorcontrib><creatorcontrib>Valencia-Gómez, Laura Elizabeth</creatorcontrib><creatorcontrib>Hernández-Paz, Juan Francisco</creatorcontrib><creatorcontrib>Martel-Estrada, Santos Adriana</creatorcontrib><creatorcontrib>Camacho-Montes, Héctor</creatorcontrib><creatorcontrib>Olivas-Armendáriz, Imelda</creatorcontrib><title>The effect of Allium cepa extract on the chitosan/PLGA scaffolds bioactivity</title><title>Journal of applied biomaterials & functional materials</title><addtitle>J Appl Biomater Funct Mater</addtitle><description>Allium cepa extracts (AC) allow the fabrication of a biomaterial that, together with chitosan and PLGA, could be osteoconductive and promote a better and faster regeneration of bone tissue, with biocompatibility and biomineralization properties. In this work, scaffolds were developed by the thermally induced phase separation (TIPS) technique. An in vitro bioactivity analysis was performed using simulated body fluid (SBF). Scanning electron microscopy (SEM), energy dispersion spectroscopy, and infrared spectroscopy were used for the scaffolds characterization. The results showed a structure with a pore size distribution between 50 and 100 μm, which allowed the uniform formation of biological apatite crystals on the surface of the scaffolds. The chitosan/policaprolactone/Allium cepa scaffold (ChPAC) showed the most promising results with a ratio of P/Ca between 1.6 and 1.7, a value very close to that of hydroxyapatite.</description><subject>Allium cepa</subject><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone growth</subject><subject>Chitosan</subject><subject>Crystals</subject><subject>Fabrication</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Infrared spectroscopy</subject><subject>Mineralization</subject><subject>Osteoconduction</subject><subject>Phase separation</subject><subject>Polylactide-co-glycolide</subject><subject>Pore size</subject><subject>Pore size distribution</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Size distribution</subject><subject>Spectrum analysis</subject><issn>2280-8000</issn><issn>2280-8000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kN1LwzAUxYMobsy9-yQBX3ypy1eb5HEMnUJBwb2XNE1cR9vMphX33y9l84OBT_dy-N1zDweAa4zuMeZ8RohAAiFEsBSSI3wGxoMUDdr5n30Ept5vwoIETmRML8GIUh5zmogxSFdrA421RnfQWTivqrKvoTZbBc1X16pBbmAXIL0uO-dVM3tNl3PotbLWVYWHeekCVX6W3e4KXFhVeTM9zgl4e3xYLZ6i9GX5vJinkWaId5FCguQKkwRJLGObW6U0QZLkVDPJTIhZxDERnDKhCy1ZoklsDWGYCWIpnYC7g-u2dR-98V1Wl16bqlKNcb3PSIwY56EQFtDbE3Tj-rYJ2TKSYEqQSAQOFDpQunXet8Zm27asVbvLMMqGqrPTqsPJzdG4z2tT_Bx8FxuA6AB49W5-v_5ruActsoK1</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Monárrez-Cordero, Blanca Elizabeth</creator><creator>Rodríguez-González, Claudia Alejandra</creator><creator>Valencia-Gómez, Laura Elizabeth</creator><creator>Hernández-Paz, Juan Francisco</creator><creator>Martel-Estrada, Santos Adriana</creator><creator>Camacho-Montes, Héctor</creator><creator>Olivas-Armendáriz, Imelda</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>JG9</scope><scope>KB0</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2233-0310</orcidid></search><sort><creationdate>2021</creationdate><title>The effect of Allium cepa extract on the chitosan/PLGA scaffolds bioactivity</title><author>Monárrez-Cordero, Blanca Elizabeth ; Rodríguez-González, Claudia Alejandra ; Valencia-Gómez, Laura Elizabeth ; Hernández-Paz, Juan Francisco ; Martel-Estrada, Santos Adriana ; Camacho-Montes, Héctor ; Olivas-Armendáriz, Imelda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-a082ba12609195fbfaac2092b3c494e081d55287348cdc946c25fe241482f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allium cepa</topic><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone growth</topic><topic>Chitosan</topic><topic>Crystals</topic><topic>Fabrication</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Infrared spectroscopy</topic><topic>Mineralization</topic><topic>Osteoconduction</topic><topic>Phase separation</topic><topic>Polylactide-co-glycolide</topic><topic>Pore size</topic><topic>Pore size distribution</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Size distribution</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monárrez-Cordero, Blanca Elizabeth</creatorcontrib><creatorcontrib>Rodríguez-González, Claudia Alejandra</creatorcontrib><creatorcontrib>Valencia-Gómez, Laura Elizabeth</creatorcontrib><creatorcontrib>Hernández-Paz, Juan Francisco</creatorcontrib><creatorcontrib>Martel-Estrada, Santos Adriana</creatorcontrib><creatorcontrib>Camacho-Montes, Héctor</creatorcontrib><creatorcontrib>Olivas-Armendáriz, Imelda</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Materials Research Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied biomaterials & functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monárrez-Cordero, Blanca Elizabeth</au><au>Rodríguez-González, Claudia Alejandra</au><au>Valencia-Gómez, Laura Elizabeth</au><au>Hernández-Paz, Juan Francisco</au><au>Martel-Estrada, Santos Adriana</au><au>Camacho-Montes, Héctor</au><au>Olivas-Armendáriz, Imelda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of Allium cepa extract on the chitosan/PLGA scaffolds bioactivity</atitle><jtitle>Journal of applied biomaterials & functional materials</jtitle><addtitle>J Appl Biomater Funct Mater</addtitle><date>2021</date><risdate>2021</risdate><volume>19</volume><spage>2280800021989701</spage><epage>2280800021989701</epage><pages>2280800021989701-2280800021989701</pages><issn>2280-8000</issn><eissn>2280-8000</eissn><abstract>Allium cepa extracts (AC) allow the fabrication of a biomaterial that, together with chitosan and PLGA, could be osteoconductive and promote a better and faster regeneration of bone tissue, with biocompatibility and biomineralization properties. In this work, scaffolds were developed by the thermally induced phase separation (TIPS) technique. An in vitro bioactivity analysis was performed using simulated body fluid (SBF). Scanning electron microscopy (SEM), energy dispersion spectroscopy, and infrared spectroscopy were used for the scaffolds characterization. The results showed a structure with a pore size distribution between 50 and 100 μm, which allowed the uniform formation of biological apatite crystals on the surface of the scaffolds. The chitosan/policaprolactone/Allium cepa scaffold (ChPAC) showed the most promising results with a ratio of P/Ca between 1.6 and 1.7, a value very close to that of hydroxyapatite.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>33757368</pmid><doi>10.1177/2280800021989701</doi><orcidid>https://orcid.org/0000-0003-2233-0310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2280-8000 |
ispartof | Journal of applied biomaterials & functional materials, 2021, Vol.19, p.2280800021989701-2280800021989701 |
issn | 2280-8000 2280-8000 |
language | eng |
recordid | cdi_proquest_miscellaneous_2504777014 |
source | DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Alma/SFX Local Collection |
subjects | Allium cepa Apatite Biocompatibility Biological activity Biomaterials Biomedical materials Body fluids Bone growth Chitosan Crystals Fabrication Hydroxyapatite In vitro methods and tests Infrared spectroscopy Mineralization Osteoconduction Phase separation Polylactide-co-glycolide Pore size Pore size distribution Regeneration Scaffolds Scanning electron microscopy Size distribution Spectrum analysis |
title | The effect of Allium cepa extract on the chitosan/PLGA scaffolds bioactivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20Allium%20cepa%20extract%20on%20the%20chitosan/PLGA%20scaffolds%20bioactivity&rft.jtitle=Journal%20of%20applied%20biomaterials%20&%20functional%20materials&rft.au=Mon%C3%A1rrez-Cordero,%20Blanca%20Elizabeth&rft.date=2021&rft.volume=19&rft.spage=2280800021989701&rft.epage=2280800021989701&rft.pages=2280800021989701-2280800021989701&rft.issn=2280-8000&rft.eissn=2280-8000&rft_id=info:doi/10.1177/2280800021989701&rft_dat=%3Cproquest_cross%3E2504777014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613208681&rft_id=info:pmid/33757368&rft_sage_id=10.1177_2280800021989701&rfr_iscdi=true |