Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model

Nesfatin-1 as a new energy-regulating peptide has been known to display a pivotal role in modulation of cardiovascular functions and protection against ischemia/reperfusion injury. However, the detailed knowledge about molecular mechanisms underlying this protection has not been completely investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2021-03, Vol.48 (3), p.2507-2518
Hauptverfasser: Sharifi, Masoomeh, Nazarinia, Donya, Ramezani, Fatemeh, Azizi, Yaser, Naderi, Nasim, Aboutaleb, Nahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2518
container_issue 3
container_start_page 2507
container_title Molecular biology reports
container_volume 48
creator Sharifi, Masoomeh
Nazarinia, Donya
Ramezani, Fatemeh
Azizi, Yaser
Naderi, Nasim
Aboutaleb, Nahid
description Nesfatin-1 as a new energy-regulating peptide has been known to display a pivotal role in modulation of cardiovascular functions and protection against ischemia/reperfusion injury. However, the detailed knowledge about molecular mechanisms underlying this protection has not been completely investigated yet. This study was designed to clarify the molecular mechanisms by which nesfatin-1 exert cardioprotection effects against myocardial ischemia–reperfusion (MI/R). Left anterior descending coronary artery (LAD) was ligated for 30 min to create a MI/R model in rats. MI/R rats were treated with three concentrations of nesfatin-1 (10, 15 and 20 µg/kg) then expression of necroptosis and necrosis mediators were measured by western blotting assay. Fibrosis, morphological damages, cardiac function, myocardial injury indictors and oxidative stress factors were evaluated as well. Induction of MI/R model resulted in cardiac dysfunction, oxidative stress, increased activity of RIPK1-RIPK3-MLKL axis and RhoA/ROCK pathway, extension of fibrosis and heart tissue damage. Highest tested concentration of nesfatin-1 markedly improved cardiac function. Moreover, it reduced oxidative stress, collagen deposition, and morphological damages, through inhibiting the expression of necroptosis mediators and also, necrosis including RIPK1, RIPK3, MLKL, ROCK1, and ROCK2 proteins. The lowest and middle tested concentrations of nesfatin-1 failed to exert protective effects against MI/R. These findings have shown that nesfatin-1 can exert cardioprotection against MI/R in a dose dependent manner by suppressing necroptosis via modulation of RIPK1-RIPK3-MLKL axis and RhoA/ROCK/RIP3 signaling pathway.
doi_str_mv 10.1007/s11033-021-06289-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2504776019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504776019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a4ef35983fab3127ec822d96990a947cca5bac8a0a7f020ad35b7095e7dcbc413</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EotOWH2CBLLFhE-Y5tscxu2oEBVG1UlXW0YvjzHiUxMF2ROdD-F88nUKlLlh58c67vvYh5C2DjwxALSNjwHkBJStgVVa6uH9BFkwqXgitqpdkARxYISrJTshpjDsAEEzJ1-SEcyVlJfSC_L62Jvgp-egixbGlt1t_sby9WX-nE6btL9zHT3TwvTVzj4EmDBubIvUdvbaxw-TGglE3UoOhdX4KPlmTnB8pbtCNMdFh7x9m2FMXzdYODpfBTjZ0czxwbtzNYX-IQBow8761_Tl51WEf7ZvH84z8-PL5bv21uLq5_La-uCpMfkAqUNiOS13xDhvOSmVNVZatXmkNqIUyBmWDpkJA1UEJ2HLZKNDSqtY0RjB-Rj4cc3Pxn7ONqR5ySdv3OFo_x7qUIJRaAdMZff8M3fk5jLldppRSQmmxylR5pPKnxhhsV0_BDRj2NYP6IK0-SquztPpBWn2fl949Rs_NYNt_K38tZYAfgZhH48aGp7v_E_sHPB2lWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577747946</pqid></control><display><type>article</type><title>Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Sharifi, Masoomeh ; Nazarinia, Donya ; Ramezani, Fatemeh ; Azizi, Yaser ; Naderi, Nasim ; Aboutaleb, Nahid</creator><creatorcontrib>Sharifi, Masoomeh ; Nazarinia, Donya ; Ramezani, Fatemeh ; Azizi, Yaser ; Naderi, Nasim ; Aboutaleb, Nahid</creatorcontrib><description>Nesfatin-1 as a new energy-regulating peptide has been known to display a pivotal role in modulation of cardiovascular functions and protection against ischemia/reperfusion injury. However, the detailed knowledge about molecular mechanisms underlying this protection has not been completely investigated yet. This study was designed to clarify the molecular mechanisms by which nesfatin-1 exert cardioprotection effects against myocardial ischemia–reperfusion (MI/R). Left anterior descending coronary artery (LAD) was ligated for 30 min to create a MI/R model in rats. MI/R rats were treated with three concentrations of nesfatin-1 (10, 15 and 20 µg/kg) then expression of necroptosis and necrosis mediators were measured by western blotting assay. Fibrosis, morphological damages, cardiac function, myocardial injury indictors and oxidative stress factors were evaluated as well. Induction of MI/R model resulted in cardiac dysfunction, oxidative stress, increased activity of RIPK1-RIPK3-MLKL axis and RhoA/ROCK pathway, extension of fibrosis and heart tissue damage. Highest tested concentration of nesfatin-1 markedly improved cardiac function. Moreover, it reduced oxidative stress, collagen deposition, and morphological damages, through inhibiting the expression of necroptosis mediators and also, necrosis including RIPK1, RIPK3, MLKL, ROCK1, and ROCK2 proteins. The lowest and middle tested concentrations of nesfatin-1 failed to exert protective effects against MI/R. These findings have shown that nesfatin-1 can exert cardioprotection against MI/R in a dose dependent manner by suppressing necroptosis via modulation of RIPK1-RIPK3-MLKL axis and RhoA/ROCK/RIP3 signaling pathway.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-021-06289-x</identifier><identifier>PMID: 33755849</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Anatomy ; Animal Biochemistry ; Animals ; Biomarkers - metabolism ; Biomedical and Life Sciences ; Cardiac function ; Cardiotonic Agents - therapeutic use ; Collagen ; Coronary artery ; Disease Models, Animal ; Electrocardiography ; Fibrosis ; Glutathione - metabolism ; Histology ; Ischemia ; Life Sciences ; Male ; Malondialdehyde - metabolism ; Molecular modelling ; Morphology ; Myocardial ischemia ; Myocardial Reperfusion Injury - diagnostic imaging ; Myocardial Reperfusion Injury - drug therapy ; Myocardial Reperfusion Injury - pathology ; Myocardial Reperfusion Injury - physiopathology ; Myocardium - pathology ; Necroptosis ; Necroptosis - drug effects ; Necrosis ; Nucleobindins - pharmacology ; Nucleobindins - therapeutic use ; Original Article ; Oxidative stress ; Protein Serine-Threonine Kinases - metabolism ; Rats, Wistar ; Reactive Oxygen Species - metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Reperfusion ; Rho-associated kinase ; rho-Associated Kinases - metabolism ; rhoA GTP-Binding Protein - metabolism ; RhoA protein ; Signal transduction ; Signal Transduction - drug effects ; Superoxide Dismutase - metabolism ; Western blotting</subject><ispartof>Molecular biology reports, 2021-03, Vol.48 (3), p.2507-2518</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a4ef35983fab3127ec822d96990a947cca5bac8a0a7f020ad35b7095e7dcbc413</citedby><cites>FETCH-LOGICAL-c375t-a4ef35983fab3127ec822d96990a947cca5bac8a0a7f020ad35b7095e7dcbc413</cites><orcidid>0000-0002-7514-5939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-021-06289-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-021-06289-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33755849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharifi, Masoomeh</creatorcontrib><creatorcontrib>Nazarinia, Donya</creatorcontrib><creatorcontrib>Ramezani, Fatemeh</creatorcontrib><creatorcontrib>Azizi, Yaser</creatorcontrib><creatorcontrib>Naderi, Nasim</creatorcontrib><creatorcontrib>Aboutaleb, Nahid</creatorcontrib><title>Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><addtitle>Mol Biol Rep</addtitle><description>Nesfatin-1 as a new energy-regulating peptide has been known to display a pivotal role in modulation of cardiovascular functions and protection against ischemia/reperfusion injury. However, the detailed knowledge about molecular mechanisms underlying this protection has not been completely investigated yet. This study was designed to clarify the molecular mechanisms by which nesfatin-1 exert cardioprotection effects against myocardial ischemia–reperfusion (MI/R). Left anterior descending coronary artery (LAD) was ligated for 30 min to create a MI/R model in rats. MI/R rats were treated with three concentrations of nesfatin-1 (10, 15 and 20 µg/kg) then expression of necroptosis and necrosis mediators were measured by western blotting assay. Fibrosis, morphological damages, cardiac function, myocardial injury indictors and oxidative stress factors were evaluated as well. Induction of MI/R model resulted in cardiac dysfunction, oxidative stress, increased activity of RIPK1-RIPK3-MLKL axis and RhoA/ROCK pathway, extension of fibrosis and heart tissue damage. Highest tested concentration of nesfatin-1 markedly improved cardiac function. Moreover, it reduced oxidative stress, collagen deposition, and morphological damages, through inhibiting the expression of necroptosis mediators and also, necrosis including RIPK1, RIPK3, MLKL, ROCK1, and ROCK2 proteins. The lowest and middle tested concentrations of nesfatin-1 failed to exert protective effects against MI/R. These findings have shown that nesfatin-1 can exert cardioprotection against MI/R in a dose dependent manner by suppressing necroptosis via modulation of RIPK1-RIPK3-MLKL axis and RhoA/ROCK/RIP3 signaling pathway.</description><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Cardiac function</subject><subject>Cardiotonic Agents - therapeutic use</subject><subject>Collagen</subject><subject>Coronary artery</subject><subject>Disease Models, Animal</subject><subject>Electrocardiography</subject><subject>Fibrosis</subject><subject>Glutathione - metabolism</subject><subject>Histology</subject><subject>Ischemia</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Malondialdehyde - metabolism</subject><subject>Molecular modelling</subject><subject>Morphology</subject><subject>Myocardial ischemia</subject><subject>Myocardial Reperfusion Injury - diagnostic imaging</subject><subject>Myocardial Reperfusion Injury - drug therapy</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Myocardial Reperfusion Injury - physiopathology</subject><subject>Myocardium - pathology</subject><subject>Necroptosis</subject><subject>Necroptosis - drug effects</subject><subject>Necrosis</subject><subject>Nucleobindins - pharmacology</subject><subject>Nucleobindins - therapeutic use</subject><subject>Original Article</subject><subject>Oxidative stress</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Rats, Wistar</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Reperfusion</subject><subject>Rho-associated kinase</subject><subject>rho-Associated Kinases - metabolism</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA protein</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Western blotting</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAURS0EotOWH2CBLLFhE-Y5tscxu2oEBVG1UlXW0YvjzHiUxMF2ROdD-F88nUKlLlh58c67vvYh5C2DjwxALSNjwHkBJStgVVa6uH9BFkwqXgitqpdkARxYISrJTshpjDsAEEzJ1-SEcyVlJfSC_L62Jvgp-egixbGlt1t_sby9WX-nE6btL9zHT3TwvTVzj4EmDBubIvUdvbaxw-TGglE3UoOhdX4KPlmTnB8pbtCNMdFh7x9m2FMXzdYODpfBTjZ0czxwbtzNYX-IQBow8761_Tl51WEf7ZvH84z8-PL5bv21uLq5_La-uCpMfkAqUNiOS13xDhvOSmVNVZatXmkNqIUyBmWDpkJA1UEJ2HLZKNDSqtY0RjB-Rj4cc3Pxn7ONqR5ySdv3OFo_x7qUIJRaAdMZff8M3fk5jLldppRSQmmxylR5pPKnxhhsV0_BDRj2NYP6IK0-SquztPpBWn2fl949Rs_NYNt_K38tZYAfgZhH48aGp7v_E_sHPB2lWA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sharifi, Masoomeh</creator><creator>Nazarinia, Donya</creator><creator>Ramezani, Fatemeh</creator><creator>Azizi, Yaser</creator><creator>Naderi, Nasim</creator><creator>Aboutaleb, Nahid</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7514-5939</orcidid></search><sort><creationdate>20210301</creationdate><title>Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model</title><author>Sharifi, Masoomeh ; Nazarinia, Donya ; Ramezani, Fatemeh ; Azizi, Yaser ; Naderi, Nasim ; Aboutaleb, Nahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a4ef35983fab3127ec822d96990a947cca5bac8a0a7f020ad35b7095e7dcbc413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Cardiac function</topic><topic>Cardiotonic Agents - therapeutic use</topic><topic>Collagen</topic><topic>Coronary artery</topic><topic>Disease Models, Animal</topic><topic>Electrocardiography</topic><topic>Fibrosis</topic><topic>Glutathione - metabolism</topic><topic>Histology</topic><topic>Ischemia</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Malondialdehyde - metabolism</topic><topic>Molecular modelling</topic><topic>Morphology</topic><topic>Myocardial ischemia</topic><topic>Myocardial Reperfusion Injury - diagnostic imaging</topic><topic>Myocardial Reperfusion Injury - drug therapy</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Myocardial Reperfusion Injury - physiopathology</topic><topic>Myocardium - pathology</topic><topic>Necroptosis</topic><topic>Necroptosis - drug effects</topic><topic>Necrosis</topic><topic>Nucleobindins - pharmacology</topic><topic>Nucleobindins - therapeutic use</topic><topic>Original Article</topic><topic>Oxidative stress</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Rats, Wistar</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Reperfusion</topic><topic>Rho-associated kinase</topic><topic>rho-Associated Kinases - metabolism</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA protein</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifi, Masoomeh</creatorcontrib><creatorcontrib>Nazarinia, Donya</creatorcontrib><creatorcontrib>Ramezani, Fatemeh</creatorcontrib><creatorcontrib>Azizi, Yaser</creatorcontrib><creatorcontrib>Naderi, Nasim</creatorcontrib><creatorcontrib>Aboutaleb, Nahid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifi, Masoomeh</au><au>Nazarinia, Donya</au><au>Ramezani, Fatemeh</au><au>Azizi, Yaser</au><au>Naderi, Nasim</au><au>Aboutaleb, Nahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><addtitle>Mol Biol Rep</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>48</volume><issue>3</issue><spage>2507</spage><epage>2518</epage><pages>2507-2518</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>Nesfatin-1 as a new energy-regulating peptide has been known to display a pivotal role in modulation of cardiovascular functions and protection against ischemia/reperfusion injury. However, the detailed knowledge about molecular mechanisms underlying this protection has not been completely investigated yet. This study was designed to clarify the molecular mechanisms by which nesfatin-1 exert cardioprotection effects against myocardial ischemia–reperfusion (MI/R). Left anterior descending coronary artery (LAD) was ligated for 30 min to create a MI/R model in rats. MI/R rats were treated with three concentrations of nesfatin-1 (10, 15 and 20 µg/kg) then expression of necroptosis and necrosis mediators were measured by western blotting assay. Fibrosis, morphological damages, cardiac function, myocardial injury indictors and oxidative stress factors were evaluated as well. Induction of MI/R model resulted in cardiac dysfunction, oxidative stress, increased activity of RIPK1-RIPK3-MLKL axis and RhoA/ROCK pathway, extension of fibrosis and heart tissue damage. Highest tested concentration of nesfatin-1 markedly improved cardiac function. Moreover, it reduced oxidative stress, collagen deposition, and morphological damages, through inhibiting the expression of necroptosis mediators and also, necrosis including RIPK1, RIPK3, MLKL, ROCK1, and ROCK2 proteins. The lowest and middle tested concentrations of nesfatin-1 failed to exert protective effects against MI/R. These findings have shown that nesfatin-1 can exert cardioprotection against MI/R in a dose dependent manner by suppressing necroptosis via modulation of RIPK1-RIPK3-MLKL axis and RhoA/ROCK/RIP3 signaling pathway.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33755849</pmid><doi>10.1007/s11033-021-06289-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7514-5939</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-4851
ispartof Molecular biology reports, 2021-03, Vol.48 (3), p.2507-2518
issn 0301-4851
1573-4978
language eng
recordid cdi_proquest_miscellaneous_2504776019
source MEDLINE; SpringerNature Journals
subjects Animal Anatomy
Animal Biochemistry
Animals
Biomarkers - metabolism
Biomedical and Life Sciences
Cardiac function
Cardiotonic Agents - therapeutic use
Collagen
Coronary artery
Disease Models, Animal
Electrocardiography
Fibrosis
Glutathione - metabolism
Histology
Ischemia
Life Sciences
Male
Malondialdehyde - metabolism
Molecular modelling
Morphology
Myocardial ischemia
Myocardial Reperfusion Injury - diagnostic imaging
Myocardial Reperfusion Injury - drug therapy
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - physiopathology
Myocardium - pathology
Necroptosis
Necroptosis - drug effects
Necrosis
Nucleobindins - pharmacology
Nucleobindins - therapeutic use
Original Article
Oxidative stress
Protein Serine-Threonine Kinases - metabolism
Rats, Wistar
Reactive Oxygen Species - metabolism
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
Reperfusion
Rho-associated kinase
rho-Associated Kinases - metabolism
rhoA GTP-Binding Protein - metabolism
RhoA protein
Signal transduction
Signal Transduction - drug effects
Superoxide Dismutase - metabolism
Western blotting
title Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Necroptosis%20and%20RhoA/ROCK%20pathways:%20molecular%20targets%20of%20Nesfatin-1%20in%20cardioprotection%20against%20myocardial%20ischemia/reperfusion%20injury%20in%20a%20rat%20model&rft.jtitle=Molecular%20biology%20reports&rft.au=Sharifi,%20Masoomeh&rft.date=2021-03-01&rft.volume=48&rft.issue=3&rft.spage=2507&rft.epage=2518&rft.pages=2507-2518&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-021-06289-x&rft_dat=%3Cproquest_cross%3E2504776019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577747946&rft_id=info:pmid/33755849&rfr_iscdi=true