6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy
Myocardial ischemia/reperfusion injury (MIRI) causes severe damage in cardiac tissue, thereby resulting in a high rate of mortality. 6-Gingerol (6-G) is reported to play an essential role in alleviating MIRI. However, the underlying mechanism remains obscure. This study was intended to explore the p...
Gespeichert in:
Veröffentlicht in: | Laboratory investigation 2021-07, Vol.101 (7), p.865-877 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 877 |
---|---|
container_issue | 7 |
container_start_page | 865 |
container_title | Laboratory investigation |
container_volume | 101 |
creator | Lv, Xiang-Wei Wang, Meng-Jie Qin, Qiu-Yu Lu, Pan Qin, Guo-Wei |
description | Myocardial ischemia/reperfusion injury (MIRI) causes severe damage in cardiac tissue, thereby resulting in a high rate of mortality. 6-Gingerol (6-G) is reported to play an essential role in alleviating MIRI. However, the underlying mechanism remains obscure. This study was intended to explore the potential mechanism by which 6-G functions. Q-PCR was employed to quantify the relative RNA levels of long noncoding RNA (lncRNA) H19 (H19), miR-143, and ATG7, an enzyme essential for autophagy, in HL-1 cells. Western blotting, immunofluorescence, and immunohistochemistry were employed for protein evaluation in cultured cells or mouse tissues. Cell viability, cytotoxicity, and apoptosis were analysed by CCK-8, LDH, and flow cytometry assays, respectively. The binding sites for miR-143 were predicted using starBase software and experimentally validated through a dual-luciferase reporter system. Here, we found that 6-G elevated cellular H19 expression in hypoxia/reoxygenation (H/R)-treated HL-1 cells. Moreover, 6-G increased Bcl-2 expression but reduced cleaved caspase 3 and caspase 9 protein levels. Mechanistically, H19 directly interacted with miR-143 and lowered its cellular abundance by acting as a molecular sponge. Importantly, ATG7 was validated as a regulated gene of miR-143, and the depletion of miR-143 by H19 caused an increased in ATG7 expression, which in turn promoted the autophagy process. Last, mouse experiments highly supported our in vitro findings that 6-G relieves MIRI by enhancing autophagy. The H19/miR-143/ATG7 axis was shown to be critical for the function of 6-G in relieving MIRI. |
doi_str_mv | 10.1038/s41374-021-00575-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2504773988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002368372200232X</els_id><sourcerecordid>2504773988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1a7579265f586c23ece8c55e444962e03a2a610d6c30d98f470b97e2608724e03</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EokPhBVigSGzYmPG_HYnNqKJTpAqkqqwtj3Mz9chJBjupyJoXr4cUkFh05cU957Pu_RB6S8lHSrhZZ0G5FpgwigmRWuL6GVpRyQkmnOjnaEUI41gZrs_Qq5wPhFAhlHyJzjjX0nDDV-iXwtvQ7yENsUoQA9xDrrp58C41wcUqZH_noAtuneAIqZ1yGPoq9IcpzdVuLs5-im4sEVXs_c3XTXVF63UXbjAVfL253eoqh33v4olwP0PGHZTgEZrKTeNwvHP7-TV60bqY4c3je46-X36-vbjC19-2Xy4219gLzUZMnZa6Zkq20ijPOHgwXkoQQtSKAeGOOUVJozwnTW1aocmu1sAUMZqJMj9HH5bcYxp-TJBH25X1IEbXwzBlyyQRWvPamIK-_w89DFMqa5wowZkwSuhCsYXyacg5QWuPKXQuzZYSe6rILhXZUpH9XZGti_TuMXralVv8Vf50UgC-ALmMTtX8-_vJ2E-LBeWC96FY2Qfofbl2Aj_aZghP6Q_Mx65m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543248647</pqid></control><display><type>article</type><title>6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lv, Xiang-Wei ; Wang, Meng-Jie ; Qin, Qiu-Yu ; Lu, Pan ; Qin, Guo-Wei</creator><creatorcontrib>Lv, Xiang-Wei ; Wang, Meng-Jie ; Qin, Qiu-Yu ; Lu, Pan ; Qin, Guo-Wei</creatorcontrib><description>Myocardial ischemia/reperfusion injury (MIRI) causes severe damage in cardiac tissue, thereby resulting in a high rate of mortality. 6-Gingerol (6-G) is reported to play an essential role in alleviating MIRI. However, the underlying mechanism remains obscure. This study was intended to explore the potential mechanism by which 6-G functions. Q-PCR was employed to quantify the relative RNA levels of long noncoding RNA (lncRNA) H19 (H19), miR-143, and ATG7, an enzyme essential for autophagy, in HL-1 cells. Western blotting, immunofluorescence, and immunohistochemistry were employed for protein evaluation in cultured cells or mouse tissues. Cell viability, cytotoxicity, and apoptosis were analysed by CCK-8, LDH, and flow cytometry assays, respectively. The binding sites for miR-143 were predicted using starBase software and experimentally validated through a dual-luciferase reporter system. Here, we found that 6-G elevated cellular H19 expression in hypoxia/reoxygenation (H/R)-treated HL-1 cells. Moreover, 6-G increased Bcl-2 expression but reduced cleaved caspase 3 and caspase 9 protein levels. Mechanistically, H19 directly interacted with miR-143 and lowered its cellular abundance by acting as a molecular sponge. Importantly, ATG7 was validated as a regulated gene of miR-143, and the depletion of miR-143 by H19 caused an increased in ATG7 expression, which in turn promoted the autophagy process. Last, mouse experiments highly supported our in vitro findings that 6-G relieves MIRI by enhancing autophagy. The H19/miR-143/ATG7 axis was shown to be critical for the function of 6-G in relieving MIRI.</description><identifier>ISSN: 0023-6837</identifier><identifier>EISSN: 1530-0307</identifier><identifier>DOI: 10.1038/s41374-021-00575-9</identifier><identifier>PMID: 33758383</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>3' Untranslated regions ; 64/60 ; 692/699 ; 692/699/75 ; Animal tissues ; Animals ; Apoptosis ; Autophagy ; Autophagy - drug effects ; Autophagy-Related Protein 7 - metabolism ; Bcl-2 protein ; Binding sites ; Caspase-3 ; Caspase-9 ; Catechols - pharmacology ; Cell Line ; Cell viability ; Cholecystokinin ; Cytotoxicity ; Depletion ; Enzymes ; Fatty Alcohols - pharmacology ; Flow cytometry ; Ginger ; Gingerol ; Hypoxia ; Immunofluorescence ; Immunohistochemistry ; Injuries ; Ischemia ; Laboratory Medicine ; Male ; Medicine ; Medicine & Public Health ; Mice ; Mice, Inbred C57BL ; MicroRNAs - metabolism ; Myocardial ischemia ; Myocardial Reperfusion Injury - metabolism ; Pathology ; Phagocytosis ; Proteins ; Reperfusion ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - metabolism ; Signal Transduction - drug effects ; Toxicity ; Western blotting</subject><ispartof>Laboratory investigation, 2021-07, Vol.101 (7), p.865-877</ispartof><rights>2021 United States & Canadian Academy of Pathology</rights><rights>The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1a7579265f586c23ece8c55e444962e03a2a610d6c30d98f470b97e2608724e03</citedby><cites>FETCH-LOGICAL-c472t-1a7579265f586c23ece8c55e444962e03a2a610d6c30d98f470b97e2608724e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33758383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Xiang-Wei</creatorcontrib><creatorcontrib>Wang, Meng-Jie</creatorcontrib><creatorcontrib>Qin, Qiu-Yu</creatorcontrib><creatorcontrib>Lu, Pan</creatorcontrib><creatorcontrib>Qin, Guo-Wei</creatorcontrib><title>6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy</title><title>Laboratory investigation</title><addtitle>Lab Invest</addtitle><addtitle>Lab Invest</addtitle><description>Myocardial ischemia/reperfusion injury (MIRI) causes severe damage in cardiac tissue, thereby resulting in a high rate of mortality. 6-Gingerol (6-G) is reported to play an essential role in alleviating MIRI. However, the underlying mechanism remains obscure. This study was intended to explore the potential mechanism by which 6-G functions. Q-PCR was employed to quantify the relative RNA levels of long noncoding RNA (lncRNA) H19 (H19), miR-143, and ATG7, an enzyme essential for autophagy, in HL-1 cells. Western blotting, immunofluorescence, and immunohistochemistry were employed for protein evaluation in cultured cells or mouse tissues. Cell viability, cytotoxicity, and apoptosis were analysed by CCK-8, LDH, and flow cytometry assays, respectively. The binding sites for miR-143 were predicted using starBase software and experimentally validated through a dual-luciferase reporter system. Here, we found that 6-G elevated cellular H19 expression in hypoxia/reoxygenation (H/R)-treated HL-1 cells. Moreover, 6-G increased Bcl-2 expression but reduced cleaved caspase 3 and caspase 9 protein levels. Mechanistically, H19 directly interacted with miR-143 and lowered its cellular abundance by acting as a molecular sponge. Importantly, ATG7 was validated as a regulated gene of miR-143, and the depletion of miR-143 by H19 caused an increased in ATG7 expression, which in turn promoted the autophagy process. Last, mouse experiments highly supported our in vitro findings that 6-G relieves MIRI by enhancing autophagy. The H19/miR-143/ATG7 axis was shown to be critical for the function of 6-G in relieving MIRI.</description><subject>3' Untranslated regions</subject><subject>64/60</subject><subject>692/699</subject><subject>692/699/75</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy-Related Protein 7 - metabolism</subject><subject>Bcl-2 protein</subject><subject>Binding sites</subject><subject>Caspase-3</subject><subject>Caspase-9</subject><subject>Catechols - pharmacology</subject><subject>Cell Line</subject><subject>Cell viability</subject><subject>Cholecystokinin</subject><subject>Cytotoxicity</subject><subject>Depletion</subject><subject>Enzymes</subject><subject>Fatty Alcohols - pharmacology</subject><subject>Flow cytometry</subject><subject>Ginger</subject><subject>Gingerol</subject><subject>Hypoxia</subject><subject>Immunofluorescence</subject><subject>Immunohistochemistry</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Laboratory Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs - metabolism</subject><subject>Myocardial ischemia</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Pathology</subject><subject>Phagocytosis</subject><subject>Proteins</subject><subject>Reperfusion</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Toxicity</subject><subject>Western blotting</subject><issn>0023-6837</issn><issn>1530-0307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAURi0EokPhBVigSGzYmPG_HYnNqKJTpAqkqqwtj3Mz9chJBjupyJoXr4cUkFh05cU957Pu_RB6S8lHSrhZZ0G5FpgwigmRWuL6GVpRyQkmnOjnaEUI41gZrs_Qq5wPhFAhlHyJzjjX0nDDV-iXwtvQ7yENsUoQA9xDrrp58C41wcUqZH_noAtuneAIqZ1yGPoq9IcpzdVuLs5-im4sEVXs_c3XTXVF63UXbjAVfL253eoqh33v4olwP0PGHZTgEZrKTeNwvHP7-TV60bqY4c3je46-X36-vbjC19-2Xy4219gLzUZMnZa6Zkq20ijPOHgwXkoQQtSKAeGOOUVJozwnTW1aocmu1sAUMZqJMj9HH5bcYxp-TJBH25X1IEbXwzBlyyQRWvPamIK-_w89DFMqa5wowZkwSuhCsYXyacg5QWuPKXQuzZYSe6rILhXZUpH9XZGti_TuMXralVv8Vf50UgC-ALmMTtX8-_vJ2E-LBeWC96FY2Qfofbl2Aj_aZghP6Q_Mx65m</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Lv, Xiang-Wei</creator><creator>Wang, Meng-Jie</creator><creator>Qin, Qiu-Yu</creator><creator>Lu, Pan</creator><creator>Qin, Guo-Wei</creator><general>Elsevier Inc</general><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20210701</creationdate><title>6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy</title><author>Lv, Xiang-Wei ; Wang, Meng-Jie ; Qin, Qiu-Yu ; Lu, Pan ; Qin, Guo-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1a7579265f586c23ece8c55e444962e03a2a610d6c30d98f470b97e2608724e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3' Untranslated regions</topic><topic>64/60</topic><topic>692/699</topic><topic>692/699/75</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy-Related Protein 7 - metabolism</topic><topic>Bcl-2 protein</topic><topic>Binding sites</topic><topic>Caspase-3</topic><topic>Caspase-9</topic><topic>Catechols - pharmacology</topic><topic>Cell Line</topic><topic>Cell viability</topic><topic>Cholecystokinin</topic><topic>Cytotoxicity</topic><topic>Depletion</topic><topic>Enzymes</topic><topic>Fatty Alcohols - pharmacology</topic><topic>Flow cytometry</topic><topic>Ginger</topic><topic>Gingerol</topic><topic>Hypoxia</topic><topic>Immunofluorescence</topic><topic>Immunohistochemistry</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Laboratory Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs - metabolism</topic><topic>Myocardial ischemia</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Pathology</topic><topic>Phagocytosis</topic><topic>Proteins</topic><topic>Reperfusion</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Toxicity</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Xiang-Wei</creatorcontrib><creatorcontrib>Wang, Meng-Jie</creatorcontrib><creatorcontrib>Qin, Qiu-Yu</creatorcontrib><creatorcontrib>Lu, Pan</creatorcontrib><creatorcontrib>Qin, Guo-Wei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Laboratory investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Xiang-Wei</au><au>Wang, Meng-Jie</au><au>Qin, Qiu-Yu</au><au>Lu, Pan</au><au>Qin, Guo-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy</atitle><jtitle>Laboratory investigation</jtitle><stitle>Lab Invest</stitle><addtitle>Lab Invest</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>101</volume><issue>7</issue><spage>865</spage><epage>877</epage><pages>865-877</pages><issn>0023-6837</issn><eissn>1530-0307</eissn><abstract>Myocardial ischemia/reperfusion injury (MIRI) causes severe damage in cardiac tissue, thereby resulting in a high rate of mortality. 6-Gingerol (6-G) is reported to play an essential role in alleviating MIRI. However, the underlying mechanism remains obscure. This study was intended to explore the potential mechanism by which 6-G functions. Q-PCR was employed to quantify the relative RNA levels of long noncoding RNA (lncRNA) H19 (H19), miR-143, and ATG7, an enzyme essential for autophagy, in HL-1 cells. Western blotting, immunofluorescence, and immunohistochemistry were employed for protein evaluation in cultured cells or mouse tissues. Cell viability, cytotoxicity, and apoptosis were analysed by CCK-8, LDH, and flow cytometry assays, respectively. The binding sites for miR-143 were predicted using starBase software and experimentally validated through a dual-luciferase reporter system. Here, we found that 6-G elevated cellular H19 expression in hypoxia/reoxygenation (H/R)-treated HL-1 cells. Moreover, 6-G increased Bcl-2 expression but reduced cleaved caspase 3 and caspase 9 protein levels. Mechanistically, H19 directly interacted with miR-143 and lowered its cellular abundance by acting as a molecular sponge. Importantly, ATG7 was validated as a regulated gene of miR-143, and the depletion of miR-143 by H19 caused an increased in ATG7 expression, which in turn promoted the autophagy process. Last, mouse experiments highly supported our in vitro findings that 6-G relieves MIRI by enhancing autophagy. The H19/miR-143/ATG7 axis was shown to be critical for the function of 6-G in relieving MIRI.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><pmid>33758383</pmid><doi>10.1038/s41374-021-00575-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0023-6837 |
ispartof | Laboratory investigation, 2021-07, Vol.101 (7), p.865-877 |
issn | 0023-6837 1530-0307 |
language | eng |
recordid | cdi_proquest_miscellaneous_2504773988 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 3' Untranslated regions 64/60 692/699 692/699/75 Animal tissues Animals Apoptosis Autophagy Autophagy - drug effects Autophagy-Related Protein 7 - metabolism Bcl-2 protein Binding sites Caspase-3 Caspase-9 Catechols - pharmacology Cell Line Cell viability Cholecystokinin Cytotoxicity Depletion Enzymes Fatty Alcohols - pharmacology Flow cytometry Ginger Gingerol Hypoxia Immunofluorescence Immunohistochemistry Injuries Ischemia Laboratory Medicine Male Medicine Medicine & Public Health Mice Mice, Inbred C57BL MicroRNAs - metabolism Myocardial ischemia Myocardial Reperfusion Injury - metabolism Pathology Phagocytosis Proteins Reperfusion Ribonucleic acid RNA RNA, Long Noncoding - metabolism Signal Transduction - drug effects Toxicity Western blotting |
title | 6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=6-Gingerol%20relieves%20myocardial%20ischaemia/reperfusion%20injury%20by%20regulating%20lncRNA%20H19/miR-143/ATG7%20signaling%20axis-mediated%20autophagy&rft.jtitle=Laboratory%20investigation&rft.au=Lv,%20Xiang-Wei&rft.date=2021-07-01&rft.volume=101&rft.issue=7&rft.spage=865&rft.epage=877&rft.pages=865-877&rft.issn=0023-6837&rft.eissn=1530-0307&rft_id=info:doi/10.1038/s41374-021-00575-9&rft_dat=%3Cproquest_cross%3E2504773988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543248647&rft_id=info:pmid/33758383&rft_els_id=S002368372200232X&rfr_iscdi=true |