Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI

Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New generation computing 2021, Vol.39 (3-4), p.623-645
Hauptverfasser: Paixão, Balthazar, Baroni, Lais, Pedroso, Marcel, Salles, Rebecca, Escobar, Luciana, de Sousa, Carlos, de Freitas Saldanha, Raphael, Soares, Jorge, Coutinho, Rafaelli, Porto, Fabio, Ogasawara, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 3-4
container_start_page 623
container_title New generation computing
container_volume 39
creator Paixão, Balthazar
Baroni, Lais
Pedroso, Marcel
Salles, Rebecca
Escobar, Luciana
de Sousa, Carlos
de Freitas Saldanha, Raphael
Soares, Jorge
Coutinho, Rafaelli
Porto, Fabio
Ogasawara, Eduardo
description Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.
doi_str_mv 10.1007/s00354-021-00125-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2503661246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601565441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EomngD3BAlrhwMdgej3f3glRCgYhKlfrB1XI23sTVxg62F4n-egwp5ePAaQ7zzDvzzkvIM8FfCc6b15lzQMW4FIxzIZHBAzITbStZwxEfkhmXbctAAx6R45xvKq5BycfkCKBRGgBn5NNpLn5ni4-BxoEuzj8v3zHR0euwdolduH1MxYcN9YGWraNvk731o7eBXhZbXKZX2xSnzZZenlwsn5BHgx2ze3pX5-T6_enV4iM7O_-wXJycsV41qjArbA8CbdviijtpeVMdAAjoALFXA-qu5-2g1kK1euil1YOF9QrFCtpGAsKcvDno7qfVzq17F0qyo9mnaiR9M9F683cn-K3ZxK-m6RA73lSBl3cCKX6ZXC5m53PvxtEGF6dsJNZPaSHrj-bkxT_oTZxSqPaM1FygRqVEpeSB6lPMObnh_hjBzY-szCErU52an1kZqEPP_7RxP_IrnArAAci1FTYu_d79H9nvPvCcqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601565441</pqid></control><display><type>article</type><title>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</title><source>SpringerLink Journals - AutoHoldings</source><creator>Paixão, Balthazar ; Baroni, Lais ; Pedroso, Marcel ; Salles, Rebecca ; Escobar, Luciana ; de Sousa, Carlos ; de Freitas Saldanha, Raphael ; Soares, Jorge ; Coutinho, Rafaelli ; Porto, Fabio ; Ogasawara, Eduardo</creator><creatorcontrib>Paixão, Balthazar ; Baroni, Lais ; Pedroso, Marcel ; Salles, Rebecca ; Escobar, Luciana ; de Sousa, Carlos ; de Freitas Saldanha, Raphael ; Soares, Jorge ; Coutinho, Rafaelli ; Porto, Fabio ; Ogasawara, Eduardo</creatorcontrib><description>Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.</description><identifier>ISSN: 0288-3635</identifier><identifier>EISSN: 1882-7055</identifier><identifier>DOI: 10.1007/s00354-021-00125-3</identifier><identifier>PMID: 33746335</identifier><language>eng</language><publisher>Tokyo: Ohmsha</publisher><subject>Artificial Intelligence ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Coronaviruses ; COVID-19 ; Data analysis ; Fatalities ; Modelling ; Software Engineering/Programming and Operating Systems ; Time series ; Viral diseases</subject><ispartof>New generation computing, 2021, Vol.39 (3-4), p.623-645</ispartof><rights>Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2021</rights><rights>Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</citedby><cites>FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</cites><orcidid>0000-0002-8099-2593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00354-021-00125-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00354-021-00125-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33746335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paixão, Balthazar</creatorcontrib><creatorcontrib>Baroni, Lais</creatorcontrib><creatorcontrib>Pedroso, Marcel</creatorcontrib><creatorcontrib>Salles, Rebecca</creatorcontrib><creatorcontrib>Escobar, Luciana</creatorcontrib><creatorcontrib>de Sousa, Carlos</creatorcontrib><creatorcontrib>de Freitas Saldanha, Raphael</creatorcontrib><creatorcontrib>Soares, Jorge</creatorcontrib><creatorcontrib>Coutinho, Rafaelli</creatorcontrib><creatorcontrib>Porto, Fabio</creatorcontrib><creatorcontrib>Ogasawara, Eduardo</creatorcontrib><title>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</title><title>New generation computing</title><addtitle>New Gener. Comput</addtitle><addtitle>New Gener Comput</addtitle><description>Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.</description><subject>Artificial Intelligence</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data analysis</subject><subject>Fatalities</subject><subject>Modelling</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Time series</subject><subject>Viral diseases</subject><issn>0288-3635</issn><issn>1882-7055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EomngD3BAlrhwMdgej3f3glRCgYhKlfrB1XI23sTVxg62F4n-egwp5ePAaQ7zzDvzzkvIM8FfCc6b15lzQMW4FIxzIZHBAzITbStZwxEfkhmXbctAAx6R45xvKq5BycfkCKBRGgBn5NNpLn5ni4-BxoEuzj8v3zHR0euwdolduH1MxYcN9YGWraNvk731o7eBXhZbXKZX2xSnzZZenlwsn5BHgx2ze3pX5-T6_enV4iM7O_-wXJycsV41qjArbA8CbdviijtpeVMdAAjoALFXA-qu5-2g1kK1euil1YOF9QrFCtpGAsKcvDno7qfVzq17F0qyo9mnaiR9M9F683cn-K3ZxK-m6RA73lSBl3cCKX6ZXC5m53PvxtEGF6dsJNZPaSHrj-bkxT_oTZxSqPaM1FygRqVEpeSB6lPMObnh_hjBzY-szCErU52an1kZqEPP_7RxP_IrnArAAci1FTYu_d79H9nvPvCcqQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Paixão, Balthazar</creator><creator>Baroni, Lais</creator><creator>Pedroso, Marcel</creator><creator>Salles, Rebecca</creator><creator>Escobar, Luciana</creator><creator>de Sousa, Carlos</creator><creator>de Freitas Saldanha, Raphael</creator><creator>Soares, Jorge</creator><creator>Coutinho, Rafaelli</creator><creator>Porto, Fabio</creator><creator>Ogasawara, Eduardo</creator><general>Ohmsha</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8099-2593</orcidid></search><sort><creationdate>2021</creationdate><title>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</title><author>Paixão, Balthazar ; Baroni, Lais ; Pedroso, Marcel ; Salles, Rebecca ; Escobar, Luciana ; de Sousa, Carlos ; de Freitas Saldanha, Raphael ; Soares, Jorge ; Coutinho, Rafaelli ; Porto, Fabio ; Ogasawara, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data analysis</topic><topic>Fatalities</topic><topic>Modelling</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Time series</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paixão, Balthazar</creatorcontrib><creatorcontrib>Baroni, Lais</creatorcontrib><creatorcontrib>Pedroso, Marcel</creatorcontrib><creatorcontrib>Salles, Rebecca</creatorcontrib><creatorcontrib>Escobar, Luciana</creatorcontrib><creatorcontrib>de Sousa, Carlos</creatorcontrib><creatorcontrib>de Freitas Saldanha, Raphael</creatorcontrib><creatorcontrib>Soares, Jorge</creatorcontrib><creatorcontrib>Coutinho, Rafaelli</creatorcontrib><creatorcontrib>Porto, Fabio</creatorcontrib><creatorcontrib>Ogasawara, Eduardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>New generation computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paixão, Balthazar</au><au>Baroni, Lais</au><au>Pedroso, Marcel</au><au>Salles, Rebecca</au><au>Escobar, Luciana</au><au>de Sousa, Carlos</au><au>de Freitas Saldanha, Raphael</au><au>Soares, Jorge</au><au>Coutinho, Rafaelli</au><au>Porto, Fabio</au><au>Ogasawara, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</atitle><jtitle>New generation computing</jtitle><stitle>New Gener. Comput</stitle><addtitle>New Gener Comput</addtitle><date>2021</date><risdate>2021</risdate><volume>39</volume><issue>3-4</issue><spage>623</spage><epage>645</epage><pages>623-645</pages><issn>0288-3635</issn><eissn>1882-7055</eissn><abstract>Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.</abstract><cop>Tokyo</cop><pub>Ohmsha</pub><pmid>33746335</pmid><doi>10.1007/s00354-021-00125-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8099-2593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0288-3635
ispartof New generation computing, 2021, Vol.39 (3-4), p.623-645
issn 0288-3635
1882-7055
language eng
recordid cdi_proquest_miscellaneous_2503661246
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Coronaviruses
COVID-19
Data analysis
Fatalities
Modelling
Software Engineering/Programming and Operating Systems
Time series
Viral diseases
title Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20COVID-19%20Under-Reporting%20in%20the%20Brazilian%20States%20Through%20SARI&rft.jtitle=New%20generation%20computing&rft.au=Paix%C3%A3o,%20Balthazar&rft.date=2021&rft.volume=39&rft.issue=3-4&rft.spage=623&rft.epage=645&rft.pages=623-645&rft.issn=0288-3635&rft.eissn=1882-7055&rft_id=info:doi/10.1007/s00354-021-00125-3&rft_dat=%3Cproquest_pubme%3E2601565441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601565441&rft_id=info:pmid/33746335&rfr_iscdi=true