Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI
Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to...
Gespeichert in:
Veröffentlicht in: | New generation computing 2021, Vol.39 (3-4), p.623-645 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 3-4 |
container_start_page | 623 |
container_title | New generation computing |
container_volume | 39 |
creator | Paixão, Balthazar Baroni, Lais Pedroso, Marcel Salles, Rebecca Escobar, Luciana de Sousa, Carlos de Freitas Saldanha, Raphael Soares, Jorge Coutinho, Rafaelli Porto, Fabio Ogasawara, Eduardo |
description | Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases. |
doi_str_mv | 10.1007/s00354-021-00125-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2503661246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601565441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EomngD3BAlrhwMdgej3f3glRCgYhKlfrB1XI23sTVxg62F4n-egwp5ePAaQ7zzDvzzkvIM8FfCc6b15lzQMW4FIxzIZHBAzITbStZwxEfkhmXbctAAx6R45xvKq5BycfkCKBRGgBn5NNpLn5ni4-BxoEuzj8v3zHR0euwdolduH1MxYcN9YGWraNvk731o7eBXhZbXKZX2xSnzZZenlwsn5BHgx2ze3pX5-T6_enV4iM7O_-wXJycsV41qjArbA8CbdviijtpeVMdAAjoALFXA-qu5-2g1kK1euil1YOF9QrFCtpGAsKcvDno7qfVzq17F0qyo9mnaiR9M9F683cn-K3ZxK-m6RA73lSBl3cCKX6ZXC5m53PvxtEGF6dsJNZPaSHrj-bkxT_oTZxSqPaM1FygRqVEpeSB6lPMObnh_hjBzY-szCErU52an1kZqEPP_7RxP_IrnArAAci1FTYu_d79H9nvPvCcqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601565441</pqid></control><display><type>article</type><title>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</title><source>SpringerLink Journals - AutoHoldings</source><creator>Paixão, Balthazar ; Baroni, Lais ; Pedroso, Marcel ; Salles, Rebecca ; Escobar, Luciana ; de Sousa, Carlos ; de Freitas Saldanha, Raphael ; Soares, Jorge ; Coutinho, Rafaelli ; Porto, Fabio ; Ogasawara, Eduardo</creator><creatorcontrib>Paixão, Balthazar ; Baroni, Lais ; Pedroso, Marcel ; Salles, Rebecca ; Escobar, Luciana ; de Sousa, Carlos ; de Freitas Saldanha, Raphael ; Soares, Jorge ; Coutinho, Rafaelli ; Porto, Fabio ; Ogasawara, Eduardo</creatorcontrib><description>Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.</description><identifier>ISSN: 0288-3635</identifier><identifier>EISSN: 1882-7055</identifier><identifier>DOI: 10.1007/s00354-021-00125-3</identifier><identifier>PMID: 33746335</identifier><language>eng</language><publisher>Tokyo: Ohmsha</publisher><subject>Artificial Intelligence ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Coronaviruses ; COVID-19 ; Data analysis ; Fatalities ; Modelling ; Software Engineering/Programming and Operating Systems ; Time series ; Viral diseases</subject><ispartof>New generation computing, 2021, Vol.39 (3-4), p.623-645</ispartof><rights>Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2021</rights><rights>Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</citedby><cites>FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</cites><orcidid>0000-0002-8099-2593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00354-021-00125-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00354-021-00125-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33746335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paixão, Balthazar</creatorcontrib><creatorcontrib>Baroni, Lais</creatorcontrib><creatorcontrib>Pedroso, Marcel</creatorcontrib><creatorcontrib>Salles, Rebecca</creatorcontrib><creatorcontrib>Escobar, Luciana</creatorcontrib><creatorcontrib>de Sousa, Carlos</creatorcontrib><creatorcontrib>de Freitas Saldanha, Raphael</creatorcontrib><creatorcontrib>Soares, Jorge</creatorcontrib><creatorcontrib>Coutinho, Rafaelli</creatorcontrib><creatorcontrib>Porto, Fabio</creatorcontrib><creatorcontrib>Ogasawara, Eduardo</creatorcontrib><title>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</title><title>New generation computing</title><addtitle>New Gener. Comput</addtitle><addtitle>New Gener Comput</addtitle><description>Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.</description><subject>Artificial Intelligence</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data analysis</subject><subject>Fatalities</subject><subject>Modelling</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Time series</subject><subject>Viral diseases</subject><issn>0288-3635</issn><issn>1882-7055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EomngD3BAlrhwMdgej3f3glRCgYhKlfrB1XI23sTVxg62F4n-egwp5ePAaQ7zzDvzzkvIM8FfCc6b15lzQMW4FIxzIZHBAzITbStZwxEfkhmXbctAAx6R45xvKq5BycfkCKBRGgBn5NNpLn5ni4-BxoEuzj8v3zHR0euwdolduH1MxYcN9YGWraNvk731o7eBXhZbXKZX2xSnzZZenlwsn5BHgx2ze3pX5-T6_enV4iM7O_-wXJycsV41qjArbA8CbdviijtpeVMdAAjoALFXA-qu5-2g1kK1euil1YOF9QrFCtpGAsKcvDno7qfVzq17F0qyo9mnaiR9M9F683cn-K3ZxK-m6RA73lSBl3cCKX6ZXC5m53PvxtEGF6dsJNZPaSHrj-bkxT_oTZxSqPaM1FygRqVEpeSB6lPMObnh_hjBzY-szCErU52an1kZqEPP_7RxP_IrnArAAci1FTYu_d79H9nvPvCcqQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Paixão, Balthazar</creator><creator>Baroni, Lais</creator><creator>Pedroso, Marcel</creator><creator>Salles, Rebecca</creator><creator>Escobar, Luciana</creator><creator>de Sousa, Carlos</creator><creator>de Freitas Saldanha, Raphael</creator><creator>Soares, Jorge</creator><creator>Coutinho, Rafaelli</creator><creator>Porto, Fabio</creator><creator>Ogasawara, Eduardo</creator><general>Ohmsha</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8099-2593</orcidid></search><sort><creationdate>2021</creationdate><title>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</title><author>Paixão, Balthazar ; Baroni, Lais ; Pedroso, Marcel ; Salles, Rebecca ; Escobar, Luciana ; de Sousa, Carlos ; de Freitas Saldanha, Raphael ; Soares, Jorge ; Coutinho, Rafaelli ; Porto, Fabio ; Ogasawara, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a1ac315a885b0e2a0702133139355c4f569c08f4d1486fc2a6fa3db51b3872353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data analysis</topic><topic>Fatalities</topic><topic>Modelling</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Time series</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paixão, Balthazar</creatorcontrib><creatorcontrib>Baroni, Lais</creatorcontrib><creatorcontrib>Pedroso, Marcel</creatorcontrib><creatorcontrib>Salles, Rebecca</creatorcontrib><creatorcontrib>Escobar, Luciana</creatorcontrib><creatorcontrib>de Sousa, Carlos</creatorcontrib><creatorcontrib>de Freitas Saldanha, Raphael</creatorcontrib><creatorcontrib>Soares, Jorge</creatorcontrib><creatorcontrib>Coutinho, Rafaelli</creatorcontrib><creatorcontrib>Porto, Fabio</creatorcontrib><creatorcontrib>Ogasawara, Eduardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>New generation computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paixão, Balthazar</au><au>Baroni, Lais</au><au>Pedroso, Marcel</au><au>Salles, Rebecca</au><au>Escobar, Luciana</au><au>de Sousa, Carlos</au><au>de Freitas Saldanha, Raphael</au><au>Soares, Jorge</au><au>Coutinho, Rafaelli</au><au>Porto, Fabio</au><au>Ogasawara, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI</atitle><jtitle>New generation computing</jtitle><stitle>New Gener. Comput</stitle><addtitle>New Gener Comput</addtitle><date>2021</date><risdate>2021</risdate><volume>39</volume><issue>3-4</issue><spage>623</spage><epage>645</epage><pages>623-645</pages><issn>0288-3635</issn><eissn>1882-7055</eissn><abstract>Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.</abstract><cop>Tokyo</cop><pub>Ohmsha</pub><pmid>33746335</pmid><doi>10.1007/s00354-021-00125-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8099-2593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0288-3635 |
ispartof | New generation computing, 2021, Vol.39 (3-4), p.623-645 |
issn | 0288-3635 1882-7055 |
language | eng |
recordid | cdi_proquest_miscellaneous_2503661246 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Hardware Computer Science Computer Systems Organization and Communication Networks Coronaviruses COVID-19 Data analysis Fatalities Modelling Software Engineering/Programming and Operating Systems Time series Viral diseases |
title | Estimation of COVID-19 Under-Reporting in the Brazilian States Through SARI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20COVID-19%20Under-Reporting%20in%20the%20Brazilian%20States%20Through%20SARI&rft.jtitle=New%20generation%20computing&rft.au=Paix%C3%A3o,%20Balthazar&rft.date=2021&rft.volume=39&rft.issue=3-4&rft.spage=623&rft.epage=645&rft.pages=623-645&rft.issn=0288-3635&rft.eissn=1882-7055&rft_id=info:doi/10.1007/s00354-021-00125-3&rft_dat=%3Cproquest_pubme%3E2601565441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601565441&rft_id=info:pmid/33746335&rfr_iscdi=true |