Hierarchical pathology screening for cervical abnormality

•We propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance.•Our framework can automatically find and locate “abnormal” cells from WSI images and alert pathologists.•Our framework consists of three stages to progressively suppress the errors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2021-04, Vol.89, p.101892-101892, Article 101892
Hauptverfasser: Zhou, Ming, Zhang, Lichi, Du, Xiaping, Ouyang, Xi, Zhang, Xin, Shen, Qijia, Luo, Dong, Fan, Xiangshan, Wang, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101892
container_issue
container_start_page 101892
container_title Computerized medical imaging and graphics
container_volume 89
creator Zhou, Ming
Zhang, Lichi
Du, Xiaping
Ouyang, Xi
Zhang, Xin
Shen, Qijia
Luo, Dong
Fan, Xiangshan
Wang, Qian
description •We propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance.•Our framework can automatically find and locate “abnormal” cells from WSI images and alert pathologists.•Our framework consists of three stages to progressively suppress the errors and guarantee the robustness. Cervical smear screening is an imaging-based cancer detection tool, which is of pivotal importance for the early-stage diagnosis. A computer-aided screening system can automatically find out if the scanned whole-slide images (WSI) with cervical cells are classified as “abnormal” or “normal”, and then alert pathologists. It can significantly reduce the workload for human experts, and is therefore highly demanded in clinical practice. Most of the screening methods are based on automatic cervical cell detection and classification, but the accuracy is generally limited due to the high variation of cell appearance and lacking context information from the surroundings. Here we propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance of case-level diagnosis and finding suspected “abnormal” cells. Our framework consists of three stages. We commence by extracting a large number of pathology images from the scanned WSIs, and implementing abnormal cell detection to each pathology image. Then, we feed the detected “abnormal” cells with corresponding confidence into our novel classification model for a comprehensive analysis of the extracted pathology images. Finally, we summarize the classification outputs of all extracted images, and determine the overall screening result for the target case. Experiments show that our three-stage hierarchical method can effectively suppress the errors from cell-level detection, and provide an effective and robust way for cervical abnormality screening.
doi_str_mv 10.1016/j.compmedimag.2021.101892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2503660151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611121000409</els_id><sourcerecordid>2503660151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-62f32e33902a40f87b39e050ead5afe372a1681e768643d89d159f3a017d840d3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEgvHxF9AQFy4ddtI2yRFNfEmTuMA5ylJ3dGqbkXRI-_dkDBDixMmS_by29TB2gTBBwPJ6OXG-W3VUNZ1dTDhw3PaV5ntshErqDKTEfTYCpYusRMQjdhzjEgA4SDxkR0LIPJdKj5h-aCjY4F4bZ9vxyg6vvvWLzTi6QNQ3_WJc-zB2FN4_ATvvfehs2wybU3ZQ2zbS2Vc9YS93t8_Th2z2dP84vZllLodiyEpeC05CaOA2h1rJudAEBZCtCluTkNxiqZBkqcpcVEpXWOhaWEBZqRwqccKudntXwb-tKQ6ma6KjtrU9-XU0vABRloAFJvTyD7r069Cn7xLFuco1qDxReke54GMMVJtVSCLDxiCYrV-zNL_8mq1fs_ObsudfF9bzNP9JfgtNwHQHUFLyntya6BrqXdoVyA2m8s0_znwAvTiQFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522849084</pqid></control><display><type>article</type><title>Hierarchical pathology screening for cervical abnormality</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhou, Ming ; Zhang, Lichi ; Du, Xiaping ; Ouyang, Xi ; Zhang, Xin ; Shen, Qijia ; Luo, Dong ; Fan, Xiangshan ; Wang, Qian</creator><creatorcontrib>Zhou, Ming ; Zhang, Lichi ; Du, Xiaping ; Ouyang, Xi ; Zhang, Xin ; Shen, Qijia ; Luo, Dong ; Fan, Xiangshan ; Wang, Qian</creatorcontrib><description>•We propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance.•Our framework can automatically find and locate “abnormal” cells from WSI images and alert pathologists.•Our framework consists of three stages to progressively suppress the errors and guarantee the robustness. Cervical smear screening is an imaging-based cancer detection tool, which is of pivotal importance for the early-stage diagnosis. A computer-aided screening system can automatically find out if the scanned whole-slide images (WSI) with cervical cells are classified as “abnormal” or “normal”, and then alert pathologists. It can significantly reduce the workload for human experts, and is therefore highly demanded in clinical practice. Most of the screening methods are based on automatic cervical cell detection and classification, but the accuracy is generally limited due to the high variation of cell appearance and lacking context information from the surroundings. Here we propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance of case-level diagnosis and finding suspected “abnormal” cells. Our framework consists of three stages. We commence by extracting a large number of pathology images from the scanned WSIs, and implementing abnormal cell detection to each pathology image. Then, we feed the detected “abnormal” cells with corresponding confidence into our novel classification model for a comprehensive analysis of the extracted pathology images. Finally, we summarize the classification outputs of all extracted images, and determine the overall screening result for the target case. Experiments show that our three-stage hierarchical method can effectively suppress the errors from cell-level detection, and provide an effective and robust way for cervical abnormality screening.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2021.101892</identifier><identifier>PMID: 33744789</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Cervical smear screening ; Cervix ; Classification ; Diagnosis ; Image classification ; Medical imaging ; Object detection ; Pathology ; Robustness ; Screening ; TCT examination</subject><ispartof>Computerized medical imaging and graphics, 2021-04, Vol.89, p.101892-101892, Article 101892</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-62f32e33902a40f87b39e050ead5afe372a1681e768643d89d159f3a017d840d3</citedby><cites>FETCH-LOGICAL-c405t-62f32e33902a40f87b39e050ead5afe372a1681e768643d89d159f3a017d840d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compmedimag.2021.101892$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33744789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Zhang, Lichi</creatorcontrib><creatorcontrib>Du, Xiaping</creatorcontrib><creatorcontrib>Ouyang, Xi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Shen, Qijia</creatorcontrib><creatorcontrib>Luo, Dong</creatorcontrib><creatorcontrib>Fan, Xiangshan</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Hierarchical pathology screening for cervical abnormality</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>•We propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance.•Our framework can automatically find and locate “abnormal” cells from WSI images and alert pathologists.•Our framework consists of three stages to progressively suppress the errors and guarantee the robustness. Cervical smear screening is an imaging-based cancer detection tool, which is of pivotal importance for the early-stage diagnosis. A computer-aided screening system can automatically find out if the scanned whole-slide images (WSI) with cervical cells are classified as “abnormal” or “normal”, and then alert pathologists. It can significantly reduce the workload for human experts, and is therefore highly demanded in clinical practice. Most of the screening methods are based on automatic cervical cell detection and classification, but the accuracy is generally limited due to the high variation of cell appearance and lacking context information from the surroundings. Here we propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance of case-level diagnosis and finding suspected “abnormal” cells. Our framework consists of three stages. We commence by extracting a large number of pathology images from the scanned WSIs, and implementing abnormal cell detection to each pathology image. Then, we feed the detected “abnormal” cells with corresponding confidence into our novel classification model for a comprehensive analysis of the extracted pathology images. Finally, we summarize the classification outputs of all extracted images, and determine the overall screening result for the target case. Experiments show that our three-stage hierarchical method can effectively suppress the errors from cell-level detection, and provide an effective and robust way for cervical abnormality screening.</description><subject>Cervical smear screening</subject><subject>Cervix</subject><subject>Classification</subject><subject>Diagnosis</subject><subject>Image classification</subject><subject>Medical imaging</subject><subject>Object detection</subject><subject>Pathology</subject><subject>Robustness</subject><subject>Screening</subject><subject>TCT examination</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEgvHxF9AQFy4ddtI2yRFNfEmTuMA5ylJ3dGqbkXRI-_dkDBDixMmS_by29TB2gTBBwPJ6OXG-W3VUNZ1dTDhw3PaV5ntshErqDKTEfTYCpYusRMQjdhzjEgA4SDxkR0LIPJdKj5h-aCjY4F4bZ9vxyg6vvvWLzTi6QNQ3_WJc-zB2FN4_ATvvfehs2wybU3ZQ2zbS2Vc9YS93t8_Th2z2dP84vZllLodiyEpeC05CaOA2h1rJudAEBZCtCluTkNxiqZBkqcpcVEpXWOhaWEBZqRwqccKudntXwb-tKQ6ma6KjtrU9-XU0vABRloAFJvTyD7r069Cn7xLFuco1qDxReke54GMMVJtVSCLDxiCYrV-zNL_8mq1fs_ObsudfF9bzNP9JfgtNwHQHUFLyntya6BrqXdoVyA2m8s0_znwAvTiQFQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Zhou, Ming</creator><creator>Zhang, Lichi</creator><creator>Du, Xiaping</creator><creator>Ouyang, Xi</creator><creator>Zhang, Xin</creator><creator>Shen, Qijia</creator><creator>Luo, Dong</creator><creator>Fan, Xiangshan</creator><creator>Wang, Qian</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202104</creationdate><title>Hierarchical pathology screening for cervical abnormality</title><author>Zhou, Ming ; Zhang, Lichi ; Du, Xiaping ; Ouyang, Xi ; Zhang, Xin ; Shen, Qijia ; Luo, Dong ; Fan, Xiangshan ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-62f32e33902a40f87b39e050ead5afe372a1681e768643d89d159f3a017d840d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cervical smear screening</topic><topic>Cervix</topic><topic>Classification</topic><topic>Diagnosis</topic><topic>Image classification</topic><topic>Medical imaging</topic><topic>Object detection</topic><topic>Pathology</topic><topic>Robustness</topic><topic>Screening</topic><topic>TCT examination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Zhang, Lichi</creatorcontrib><creatorcontrib>Du, Xiaping</creatorcontrib><creatorcontrib>Ouyang, Xi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Shen, Qijia</creatorcontrib><creatorcontrib>Luo, Dong</creatorcontrib><creatorcontrib>Fan, Xiangshan</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ming</au><au>Zhang, Lichi</au><au>Du, Xiaping</au><au>Ouyang, Xi</au><au>Zhang, Xin</au><au>Shen, Qijia</au><au>Luo, Dong</au><au>Fan, Xiangshan</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical pathology screening for cervical abnormality</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2021-04</date><risdate>2021</risdate><volume>89</volume><spage>101892</spage><epage>101892</epage><pages>101892-101892</pages><artnum>101892</artnum><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>•We propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance.•Our framework can automatically find and locate “abnormal” cells from WSI images and alert pathologists.•Our framework consists of three stages to progressively suppress the errors and guarantee the robustness. Cervical smear screening is an imaging-based cancer detection tool, which is of pivotal importance for the early-stage diagnosis. A computer-aided screening system can automatically find out if the scanned whole-slide images (WSI) with cervical cells are classified as “abnormal” or “normal”, and then alert pathologists. It can significantly reduce the workload for human experts, and is therefore highly demanded in clinical practice. Most of the screening methods are based on automatic cervical cell detection and classification, but the accuracy is generally limited due to the high variation of cell appearance and lacking context information from the surroundings. Here we propose a novel and hierarchical framework for automatic cervical smear screening aiming at the robust performance of case-level diagnosis and finding suspected “abnormal” cells. Our framework consists of three stages. We commence by extracting a large number of pathology images from the scanned WSIs, and implementing abnormal cell detection to each pathology image. Then, we feed the detected “abnormal” cells with corresponding confidence into our novel classification model for a comprehensive analysis of the extracted pathology images. Finally, we summarize the classification outputs of all extracted images, and determine the overall screening result for the target case. Experiments show that our three-stage hierarchical method can effectively suppress the errors from cell-level detection, and provide an effective and robust way for cervical abnormality screening.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33744789</pmid><doi>10.1016/j.compmedimag.2021.101892</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2021-04, Vol.89, p.101892-101892, Article 101892
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_2503660151
source ScienceDirect Journals (5 years ago - present)
subjects Cervical smear screening
Cervix
Classification
Diagnosis
Image classification
Medical imaging
Object detection
Pathology
Robustness
Screening
TCT examination
title Hierarchical pathology screening for cervical abnormality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20pathology%20screening%20for%20cervical%20abnormality&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Zhou,%20Ming&rft.date=2021-04&rft.volume=89&rft.spage=101892&rft.epage=101892&rft.pages=101892-101892&rft.artnum=101892&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2021.101892&rft_dat=%3Cproquest_cross%3E2503660151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522849084&rft_id=info:pmid/33744789&rft_els_id=S0895611121000409&rfr_iscdi=true