LSTM-based approach for predicting periodic motions of an impacting system via transient dynamics

Dynamically impacting systems are characterised with inherent instability and complex non-linear phenomena which makes it practically difficult to predict the steady state response of the system at transient periods. This study investigates the ability of a data driven machine learning method using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2021-08, Vol.140, p.49-64
Hauptverfasser: Afebu, Kenneth Omokhagbo, Liu, Yang, Papatheou, Evangelos, Guo, Bingyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 49
container_title Neural networks
container_volume 140
creator Afebu, Kenneth Omokhagbo
Liu, Yang
Papatheou, Evangelos
Guo, Bingyong
description Dynamically impacting systems are characterised with inherent instability and complex non-linear phenomena which makes it practically difficult to predict the steady state response of the system at transient periods. This study investigates the ability of a data driven machine learning method using Long Short-Term Memory networks to learn the complex nonlinearity associated with co-existing impact responses from limited transient data. A one-degree-of-freedom impact oscillator has been used to represent the bit–rock interaction for percussive drilling. Simulated data results show velocity measurements to contribute most to predicting steady state responses from transient dynamics with most of the network models reaching an accuracy of over 95%. Limitations to practically measurable variables in dynamic systems warranted the development of a feature based network model for impact motion classification. Experimental data from a two-degrees-of-freedom impacting system representing percussive bit penetration has been used to demonstrate the effectiveness of this method. The study thus provides a precise and less computational means of detecting and avoiding underperforming impact modes in percussive drilling. •Prediction of periodic responses of a percussive drilling system is studied.•Long Short-Term Memory network is used to learn system’s complex non-linearity.•Simulation results show prediction accuracy by using transient responses over 95%.•Experimental results with feature extraction validate the proposed method.•The work provides a means of avoiding underperforming modes in percussive drilling.
doi_str_mv 10.1016/j.neunet.2021.02.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2503660051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608021000770</els_id><sourcerecordid>2503660051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-adf35d2ecc55c85a05910b339e8b53a5cd48e69c84744ec459ac4767223981263</originalsourceid><addsrcrecordid>eNp9kE1r3DAQQEVpaLZJ_0EoOubi7UiyZPkSCCFpC1t6SHIWWnncaFlLrqQN7L-PgtMcCwPDwJuvR8gFgzUDpr7t1gEPAcuaA2dr4DW6D2TFdNc3vNP8I1mB7kWjQMMp-ZzzDgCUbsUncipE17YdEytiN_cPv5qtzThQO88pWvdEx5jonHDwrvjwh86YfKwFnWLxMWQaR2oD9dNsFyAfc8GJPntLS7IhewyFDsdgJ-_yOTkZ7T7jl7d8Rh7vbh9ufjSb399_3lxvGicUL40dRiEHjs5J6bS0IHsGWyF61FsprHRDq1H1Trf1dHSt7K1rO9VxLnrNuBJn5HKZW5_4e8BczOSzw_3eBoyHbLgEoRSAZBVtF9SlmHPC0czJTzYdDQPzKtfszCLXvMo1wGt0te3r24bDdsLhvemfzQpcLQDWP589JpNddeGqyYSumCH6_294Ae5EjWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503660051</pqid></control><display><type>article</type><title>LSTM-based approach for predicting periodic motions of an impacting system via transient dynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Afebu, Kenneth Omokhagbo ; Liu, Yang ; Papatheou, Evangelos ; Guo, Bingyong</creator><creatorcontrib>Afebu, Kenneth Omokhagbo ; Liu, Yang ; Papatheou, Evangelos ; Guo, Bingyong</creatorcontrib><description>Dynamically impacting systems are characterised with inherent instability and complex non-linear phenomena which makes it practically difficult to predict the steady state response of the system at transient periods. This study investigates the ability of a data driven machine learning method using Long Short-Term Memory networks to learn the complex nonlinearity associated with co-existing impact responses from limited transient data. A one-degree-of-freedom impact oscillator has been used to represent the bit–rock interaction for percussive drilling. Simulated data results show velocity measurements to contribute most to predicting steady state responses from transient dynamics with most of the network models reaching an accuracy of over 95%. Limitations to practically measurable variables in dynamic systems warranted the development of a feature based network model for impact motion classification. Experimental data from a two-degrees-of-freedom impacting system representing percussive bit penetration has been used to demonstrate the effectiveness of this method. The study thus provides a precise and less computational means of detecting and avoiding underperforming impact modes in percussive drilling. •Prediction of periodic responses of a percussive drilling system is studied.•Long Short-Term Memory network is used to learn system’s complex non-linearity.•Simulation results show prediction accuracy by using transient responses over 95%.•Experimental results with feature extraction validate the proposed method.•The work provides a means of avoiding underperforming modes in percussive drilling.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2021.02.027</identifier><identifier>PMID: 33744713</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Basin prediction ; Coexisting attractor ; Long Short-Term Memory network ; Percussive drilling ; Vibro-impact</subject><ispartof>Neural networks, 2021-08, Vol.140, p.49-64</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-adf35d2ecc55c85a05910b339e8b53a5cd48e69c84744ec459ac4767223981263</citedby><cites>FETCH-LOGICAL-c362t-adf35d2ecc55c85a05910b339e8b53a5cd48e69c84744ec459ac4767223981263</cites><orcidid>0000-0003-3867-5137 ; 0000-0003-1927-1348 ; 0000-0001-8462-5494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2021.02.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33744713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afebu, Kenneth Omokhagbo</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Papatheou, Evangelos</creatorcontrib><creatorcontrib>Guo, Bingyong</creatorcontrib><title>LSTM-based approach for predicting periodic motions of an impacting system via transient dynamics</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Dynamically impacting systems are characterised with inherent instability and complex non-linear phenomena which makes it practically difficult to predict the steady state response of the system at transient periods. This study investigates the ability of a data driven machine learning method using Long Short-Term Memory networks to learn the complex nonlinearity associated with co-existing impact responses from limited transient data. A one-degree-of-freedom impact oscillator has been used to represent the bit–rock interaction for percussive drilling. Simulated data results show velocity measurements to contribute most to predicting steady state responses from transient dynamics with most of the network models reaching an accuracy of over 95%. Limitations to practically measurable variables in dynamic systems warranted the development of a feature based network model for impact motion classification. Experimental data from a two-degrees-of-freedom impacting system representing percussive bit penetration has been used to demonstrate the effectiveness of this method. The study thus provides a precise and less computational means of detecting and avoiding underperforming impact modes in percussive drilling. •Prediction of periodic responses of a percussive drilling system is studied.•Long Short-Term Memory network is used to learn system’s complex non-linearity.•Simulation results show prediction accuracy by using transient responses over 95%.•Experimental results with feature extraction validate the proposed method.•The work provides a means of avoiding underperforming modes in percussive drilling.</description><subject>Basin prediction</subject><subject>Coexisting attractor</subject><subject>Long Short-Term Memory network</subject><subject>Percussive drilling</subject><subject>Vibro-impact</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQQEVpaLZJ_0EoOubi7UiyZPkSCCFpC1t6SHIWWnncaFlLrqQN7L-PgtMcCwPDwJuvR8gFgzUDpr7t1gEPAcuaA2dr4DW6D2TFdNc3vNP8I1mB7kWjQMMp-ZzzDgCUbsUncipE17YdEytiN_cPv5qtzThQO88pWvdEx5jonHDwrvjwh86YfKwFnWLxMWQaR2oD9dNsFyAfc8GJPntLS7IhewyFDsdgJ-_yOTkZ7T7jl7d8Rh7vbh9ufjSb399_3lxvGicUL40dRiEHjs5J6bS0IHsGWyF61FsprHRDq1H1Trf1dHSt7K1rO9VxLnrNuBJn5HKZW5_4e8BczOSzw_3eBoyHbLgEoRSAZBVtF9SlmHPC0czJTzYdDQPzKtfszCLXvMo1wGt0te3r24bDdsLhvemfzQpcLQDWP589JpNddeGqyYSumCH6_294Ae5EjWc</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Afebu, Kenneth Omokhagbo</creator><creator>Liu, Yang</creator><creator>Papatheou, Evangelos</creator><creator>Guo, Bingyong</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3867-5137</orcidid><orcidid>https://orcid.org/0000-0003-1927-1348</orcidid><orcidid>https://orcid.org/0000-0001-8462-5494</orcidid></search><sort><creationdate>202108</creationdate><title>LSTM-based approach for predicting periodic motions of an impacting system via transient dynamics</title><author>Afebu, Kenneth Omokhagbo ; Liu, Yang ; Papatheou, Evangelos ; Guo, Bingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-adf35d2ecc55c85a05910b339e8b53a5cd48e69c84744ec459ac4767223981263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basin prediction</topic><topic>Coexisting attractor</topic><topic>Long Short-Term Memory network</topic><topic>Percussive drilling</topic><topic>Vibro-impact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afebu, Kenneth Omokhagbo</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Papatheou, Evangelos</creatorcontrib><creatorcontrib>Guo, Bingyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afebu, Kenneth Omokhagbo</au><au>Liu, Yang</au><au>Papatheou, Evangelos</au><au>Guo, Bingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSTM-based approach for predicting periodic motions of an impacting system via transient dynamics</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2021-08</date><risdate>2021</risdate><volume>140</volume><spage>49</spage><epage>64</epage><pages>49-64</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Dynamically impacting systems are characterised with inherent instability and complex non-linear phenomena which makes it practically difficult to predict the steady state response of the system at transient periods. This study investigates the ability of a data driven machine learning method using Long Short-Term Memory networks to learn the complex nonlinearity associated with co-existing impact responses from limited transient data. A one-degree-of-freedom impact oscillator has been used to represent the bit–rock interaction for percussive drilling. Simulated data results show velocity measurements to contribute most to predicting steady state responses from transient dynamics with most of the network models reaching an accuracy of over 95%. Limitations to practically measurable variables in dynamic systems warranted the development of a feature based network model for impact motion classification. Experimental data from a two-degrees-of-freedom impacting system representing percussive bit penetration has been used to demonstrate the effectiveness of this method. The study thus provides a precise and less computational means of detecting and avoiding underperforming impact modes in percussive drilling. •Prediction of periodic responses of a percussive drilling system is studied.•Long Short-Term Memory network is used to learn system’s complex non-linearity.•Simulation results show prediction accuracy by using transient responses over 95%.•Experimental results with feature extraction validate the proposed method.•The work provides a means of avoiding underperforming modes in percussive drilling.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33744713</pmid><doi>10.1016/j.neunet.2021.02.027</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3867-5137</orcidid><orcidid>https://orcid.org/0000-0003-1927-1348</orcidid><orcidid>https://orcid.org/0000-0001-8462-5494</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2021-08, Vol.140, p.49-64
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2503660051
source Elsevier ScienceDirect Journals
subjects Basin prediction
Coexisting attractor
Long Short-Term Memory network
Percussive drilling
Vibro-impact
title LSTM-based approach for predicting periodic motions of an impacting system via transient dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSTM-based%20approach%20for%20predicting%20periodic%20motions%20of%20an%20impacting%20system%20via%20transient%20dynamics&rft.jtitle=Neural%20networks&rft.au=Afebu,%20Kenneth%20Omokhagbo&rft.date=2021-08&rft.volume=140&rft.spage=49&rft.epage=64&rft.pages=49-64&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2021.02.027&rft_dat=%3Cproquest_cross%3E2503660051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503660051&rft_id=info:pmid/33744713&rft_els_id=S0893608021000770&rfr_iscdi=true